
Summary of Contents

Preface . xix

1. Introduction . 1

2. Node.js Introduction . 11

3. Modules and npm . 25

4. Node’s Programming Model . 41

5. Core Modules . 59

6. Building the Node Server . 73

7. MongoDB Introduction . 87

8. Interacting with MongoDB Using Mongoose . 99

9. Using MongoDB and Mongoose in Our Sample App 115

10. Alternatives to Mongo . 129

11. Introduction to Express . 141

12. Architecture of an Express Application . 153

13. Using Express in Our App . 167

14. Alternative Server Frameworks . 175

15. AngularJS Overview . 187

16. Data Binding . 197

17. Angular Directives . 209

18. Controllers . 217

19. Client-side Routing . 229

20. Angular in Our App . 239

21. Task Runners . 257

22. Debugging . 269

23. Testing . 281

FULL STACK
JAVASCRIPT
DEVELOPMENT
WITH MEAN

BY ADAM BRETZ
& COLIN J. IHRIG

Full Stack JavaScript Development with MEAN
by Adam Bretz and Colin J. Ihrig

Copyright © 2014 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Don Nguyen

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9924612-5-6 (print)

ISBN 978-0-9924612-4-9 (ebook)

Printed and bound in the United States of America

iv

About Adam Bretz

Adam Bretz is a software engineer focusing on client and server side JavaScript. Adam earned

his Bachelor of Science in Computer Science in 2007 from Millersville University of

Pennsylvania. At a previous job, Adam was part of the team of engineers that helped migrate

the company from PHP to a pure JavaScript solution. Adam currently resides in the Pittsburgh

area with his wife, Jenna.

About Colin J. Ihrig

Colin J. Ihrig is a software engineer, working primarily with Node.js. Colin is the author of

Pro Node.js for Developers, and is currently the managing editor of SitePoint's JavaScript

channel. Colin received his Bachelor of Science in Engineering, and Master of Science in

Computer Engineering from the University of Pittsburgh in 2005 and 2008, respectively.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

To Mom and Dad ― thanks for

getting me a Nintendo when I was

seven and a computer when I was

ten. ― Adam

This book is dedicated to my wife,

Alaina, my sons, CJ and Carter,

and my mom. I love you all so

much! ― Colin

Table of Contents

Preface . xix

Who Should Read This Book . xix

Conventions Used . xx

Code Samples . xx

Tips, Notes, and Warnings . xxi

Supplementary Materials . xxi

Want to Take Your Learning Further? . xxii

Chapter 1 Introduction . 1

The Rise of Full-stack JavaScript . 2

Node.js . 3

The Node.js Ecosystem . 4

MongoDB . 5

AngularJS . 6

Summary . 8

Chapter 2 Node.js Introduction . 11

Familiarity with JavaScript . 11

The Problem with I/O . 13

An Example Web Server . 14

Stepping Around the I/O Problem . 16

Real World Data . 17

Your First Node.js Server . 19

Installing Node.js . 19

REPL . 19

Writing the Server . 20

Our Server in Action . 22

Summary . 23

Chapter 3 Modules and npm . 25

npm . 26

npm install . 26

npm search . 28

package.json . 29

The node_modules Folder . 31

Module Dependencies . 31

require() . 32

Other Uses for require . 34

Writing a Module . 35

Module Functionality . 36

Caching . 38

npm link . 39

Summary . 40

Chapter 4 Node’s Programming Model 41

The Event Loop . 41

The Illusion of Concurrency . 43

Asynchronous Coding . 44

Callback Functions . 44

Calling Conventions . 45

Exception Handling . 46

Callback Hell . 47

Event Emitters . 49

Extending EventEmitter . 50

Listening for Events . 51

Exception Handling . 53

x

The uncaughtException Event . 53

Promises . 54

Promise Chaining . 56

Summary . 57

Chapter 5 Core Modules . 59

Command Line Arguments . 59

Working with the File System . 60

__filename and __dirname . 60

The Current Working Directory . 61

Reading Files . 61

Writing Files . 63

Streams . 64

Readable Streams . 64

Writable Streams . 66

The Standard Streams . 67

Web Programming . 68

Creating a Server . 68

Routes . 70

Accessing Request Headers . 70

Summary . 71

Chapter 6 Building the Node Server 73

Server Plan . 73

Structuring the Application . 74

Getting Started . 74

Routing . 76

Database Module . 77

Querying the Database . 80

Response Generator . 81

xi

Putting It Back Together . 83

Summary . 85

Chapter 7 MongoDB Introduction 87

NoSQL Databases . 87

History of MongoDB . 88

Installing MongoDB Locally . 88

Cloud Hosting . 89

Heroku Integration . 90

The MongoDB Shell . 91

Inserting New Data . 93

Retrieving Data . 94

Updating Data . 95

Deleting Data . 96

Deleting Collections . 97

Deleting Databases . 97

Summary . 98

Chapter 8 Interacting with MongoDB Using
Mongoose . 99

Mongoose Node Module . 100

Schemas . 100

Example Mongoose Schema . 102

Mongoose Models . 103

Creating More Documents . 106

Simple Queries . 109

Updating . 112

Summary . 113

xii

Chapter 9 Using MongoDB and Mongoose in
Our Sample App . 115

Adding Mongoose Models . 116

The Employee Model . 117

The Team Model . 119

Populating the Database . 120

Accessing the Database . 126

Summary . 128

Chapter 10 Alternatives to Mongo 129

Relational Databases and SQL . 130

The mysql Module . 133

Connecting to a Database . 134

Connection Pooling . 135

Closing Connections . 136

Executing Queries . 137

Summary . 140

Chapter 11 Introduction to Express 141

The Building Blocks of Express . 143

Router . 144

Middleware . 145

Routes . 146

Putting It Together . 149

Generating an Express App . 151

Jade . 152

Summary . 152

xiii

Chapter 12 Architecture of an Express
Application . 153

Starting the Server . 153

app.js . 154

app.use . 154

cookieParser . 155

Static Files Revisited . 156

Error Handling . 157

app.set . 159

Router Object . 160

Using the Router Object . 160

Exercise . 161

Simulating Database Interaction . 161

Generating the HTML . 162

Summary . 164

Chapter 13 Using Express in Our App 167

Updates to package.json . 167

The npm start Script . 169

Defining Routes . 169

Employee Routes . 170

Team Routes . 171

Update index.js . 172

Summary . 174

Chapter 14 Alternative Server Frameworks . . . 175

hapi Overview . 176

Express Comparison . 176

Route Configuration . 178

xiv

Routing . 179

Built-in Capability . 180

Events . 180

Plugins . 182

Summary . 185

Chapter 15 AngularJS Overview 187

Single-page Applications . 187

SPA Frameworks . 189

Model-View-Controller Architecture . 190

Getting Angular . 192

Building from Source . 192

Releases . 193

Angular "Hello World" . 194

Summary . 196

Chapter 16 Data Binding . 197

One-Way Data Binding . 198

Two-Way Data Binding . 199

A Simple Example . 200

Technical Overview . 202

$watch . 202

Digest Loop . 203

Simple Controllers . 203

Data Binding with Lists . 205

Summary . 207

Chapter 17 Angular Directives . 209

Overview . 209

xv

An Example Using Common Directives . 211

Creating Directives . 213

An Example Custom Directive . 215

Summary . 216

Chapter 18 Controllers . 217

Syntax . 217

Dependencies . 219

Expanding on Our Example . 220

Express Integration . 220

JavaScript . 222

HTML . 224

Simple Service . 225

Using EmployeeService . 226

Summary . 227

Chapter 19 Client-side Routing . 229

Getting Started with ngRoute . 230

Application Overview . 230

Code . 231

Router . 232

Service and Controllers . 234

Views . 235

Putting It Together . 236

Summary . 237

Chapter 20 Angular in Our App 239

The Home Page . 240

CSS and Image Files . 241

xvi

app.js . 243

Template Files . 249

Team and Employee Listing Views . 250

Individual Team View . 251

Individual Employee View . 252

Summary . 255

Chapter 21 Task Runners . 257

Introducing Gulp . 258

Setting Up Gulp . 259

Designing a Gulp File . 260

css Task . 261

javascript Task . 263

watch Task . 266

Summary . 267

Chapter 22 Debugging . 269

The debugger Statement . 270

Running Chrome’s Debugger . 271

Controlling the Debugger . 272

Modifying Variables . 273

Node’s Debugger . 274

node-inspector . 278

node-debug . 279

Summary . 280

Chapter 23 Testing . 281

Testing Node . 282

Defining Tests . 282

xvii

skip() and only() . 285

Test Hooks . 285

Assertions . 287

Testing Angular . 288

Set Up . 290

Test Code Setup . 291

Controller Tests . 294

Running the Tests . 296

Next Steps . 296

Summary . 296

xviii

Preface
With modern tools, it is possible to create production-grade applications using only

JavaScript, HTML, and CSS. The combination of MongoDB, Express, AngularJS,

and Node.js, all JavaScript technologies, has become so popular that it’s been dubbed

the MEAN stack. This book will explore the MEAN stack in detail.

We’ll begin by covering Node.js, as it lays the groundwork for all our server-side

work. You will learn how to get Node running on your local machine, as well as

download modules using npm, Node’s package manager. The key aspects of the

Node.js programming model will also be covered.

From there, we’ll move on to MongoDB, a NoSQL database. You’ll learn how to

interact with Mongo from a Node application, and how to create, retrieve, update,

and delete data from a Mongo store.

After you have a solid grasp on Node and Mongo, the book will move on to the Ex-

press web server. We’ll address the basics of Express applications via topics such

as routes and middleware. Building on previous chapters, we will cover the integ-

ration of Node, Mongo, and Express.

Our coverage of the MEAN stack will wrap up with several chapters on AngularJS.

These chapters will detail Angular fundamentals such as data binding, directives,

controllers, routing, and services. Wrapping up the book will be chapters on debug-

ging and testing MEAN applications.

Full-stack JavaScript is not fully encompassed by the MEAN stack. There is an entire

ecosystem of JavaScript tools to learn about, and this book will introduce a few of

them. We will present task runners Gulp and Grunt, which are extremely useful for

automating mundane, repetitive tasks. We’ll also investigate JSHint, a linting tool

used to improve code quality. Along the way, we’ll also be developing an example

human resources application from scratch using the MEAN stack.

Who Should Read This Book
This book is suitable for intermediate-level web designers and developers. Experience

of HTML, CSS, and JavaScript is assumed.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing in this way:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat it, a ⋮ will be dis-

played:

xx

function animate() {
 ⋮
 return new_variable;
}

Sometimes it’s intended that certain lines of code be entered on one line, but we’ve

had to wrap them because of page constraints. An ➥ indicates a line break that exists

for formatting purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related, but not critical, to the topic at hand. Think

of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.learnable.com/books/mean1/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/mean1/

The downloadable code archive for this book.

xxi

http://www.learnable.com/books/mean1/
https://github.com/spbooks/mean1/

http://community.sitepoint.com/category/javascript

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to Take Your Learning Further?
Thanks for buying this book. Would you like to continue learning? You can now

receive unlimited access to courses and ALL SitePoint books at Learnable for one

low price. Enroll now and start learning today! Join Learnable and you’ll stay ahead

of the newest technology trends: http://www.learnable.com.

xxii

http://community.sitepoint.com/category/javascript
http://www.learnable.com

Chapter1
Introduction
Web programming is a task that takes years to truly understand. Part of the complex-

ity comes from the sheer number of moving parts. Effective programmers need at

least a basic understanding of many topics, including networking, protocols, security,

databases, server-side development, and client-side development, amongst others.

For many years, this also included working with a medley of programming languages.

Client-side programming alone requires an understanding of three languages: HTML

for markup, CSS for styling, and JavaScript for functionality. While front-end devel-

opment has its own complexities, the good news is that development is more or

less locked into the “big three” languages. The server side has been a different story

altogether. The server has been the domain of languages like Java, PHP, Perl, and

just about any other language you can think of. The majority of web applications

also utilize a database for data persistence. Historically, communicating with a

database has required developers to also understand SQL.

Creating a simple web application requires developers to understand HTML, CSS,

JavaScript, SQL, and a server-side language of choice. In addition, there’s no guar-

antee that the server side will be written in a single language. Optimistically, de-

velopers need to understand at least five separate languages to create a simple app,

and that’s without considering the data interchange format used for client-server

communication. Remember, the x in Ajax stands for XML. Many web applications

have recently moved away from XML in favor of the simpler JSON, but this is still

another layer that developers must understand.

Although HTML, CSS, and SQL aren’t strictly considered programming languages,

they each have their own syntax and quirks that developers must know. Completely

understanding five “languages” and constantly context switching between them is

a daunting task. If you’ve ever attempted this, you have likely mixed up syntax on

more than one occasion.

This has lead to specialization among developers with different teams working on

front-end and back-end development. Unfortunately, this doesn’t always ensure

that projects are completed faster or with higher quality. In fact, it often results in

more back and forth, debates, and programmers who are less knowledgeable about

a project’s big picture. There was a very clear-cut need for a language to be used

across the entire development stack. The remainder of this chapter explains how

JavaScript grew into the role of a full-stack language in a way that no other language

could.

The Rise of Full-stack JavaScript
JavaScript has long been the de facto standard for client-side scripting. JavaScript

burst onto the scene in 1995 after Brendan Eich developed what was known as

Mocha at the time over the course of just ten days. In September 1995, Netscape

Navigator 2.0 was released with Mocha, which by then had been renamed LiveScript.

JavaScript finally settled into its current name by December 1995. The name was

chosen because Netscape was attempting to ride the coattails of Sun’s Java program-

ming language, which was trendy at the time.

During the initial browser wars, Microsoft’s Internet Explorer and Netscape’s Nav-

igator were constantly trying to one-up each other. As a retort to Navigator’s JavaS-

cript, Microsoft released its own implementation, named JScript, with Internet Ex-

plorer 3.0 in August 1996. JavaScript was submitted to Ecma International, an inter-

national standards organization, in November of 1996 and JavaScript was standard-

ized as ECMA-2621 in June 1997.

1 http://www.ecma-international.org/publications/standards/Ecma-262.htm

Full Stack JavaScript Development with MEAN2

http://www.ecma-international.org/publications/standards/Ecma-262.htm

Earlier on, JavaScript earned a reputation as being a language lacking in performance

and only used by amateur developers. Yet browser vendors invested a lot of time,

energy, and money into improving JavaScript over the years. The result is that

modern JavaScript engines are highly optimized pieces of software whose perform-

ance is far beyond anything of the original JavaScript interpreters. On the client-

side, it is unlikely that any competing languages (such as Dart) will dethrone

JavaScript in the near future, as it's the only language supported by every major

browser. Couple that with overall improvements in computing, and the result is a

language that is suitable for just about any general-purpose computing task.

Node.js
In 2009, Ryan Dahl created Node.js, a framework used primarily to create scalable

network applications. Node.js is built on top of Google’s V8 JavaScript engine2 (the

same one used in Chrome) and Joyent’s libuv,3 an asynchronous I/O library that

abstracts away the underlying platform. Node made JavaScript a viable alternative

for server-side programming. Additionally, Node provided a full system JavaScript

API that was never really achieved before due to the sandboxed environment that

browsers provide. With the advent of Node, JavaScript developers could access the

file system, open network sockets, and spawn child processes.

One of Node’s top features is the ability to pack a lot of functionality into a small

amount of code. Node flaunts this right on the project’s home page.4 The code that

follows is taken directly from the Node home page, and implements a trivial web

server in just six lines:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Listing 1-1. A trivial web server written in Node

2 https://code.google.com/p/v8/
3 https://github.com/joyent/libuv
4 http://www.nodejs.org

3Introduction

https://code.google.com/p/v8/
https://github.com/joyent/libuv
http://www.nodejs.org

There’s no need to fully understand the code now, but we’ll provide a quick run-

down. The first line requires the http modules, which provide functionality for

creating HTTP clients and servers. Next, a server is started that listens on port 1337.

When a connection is received, the server responds with the message Hello World.

The last line of code simply prints a message to the console in order to let the de-

veloper know what's happening.

The Node.js Ecosystem
Node was not the first attempt at a server-side JavaScript implementation,5 but it

has certainly proven to be the most successful by far. One way of gauging a techno-

logy’s popularity is by the size of the ecosystem around it. Node has been adopted

by huge companies like Walmart, PayPal, LinkedIn, and Microsoft. It has even given

rise to completely new companies such as StrongLoop, NodeSource, and npm, Inc.

Perhaps even more impressive than the list of companies using Node is the collection

of third-party modules being developed for Node. In the few short years since Node’s

creation, over 77,000 third-party modules have been published to npm, Node’s

package manager. According to Module Counts,6 a website that tracks the number

of modules in various repositories, the npm registry is growing at a rate of approx-

imately 170 modules per day at the time of writing. The next closest package manager

in terms of growth rate is PHP’s Packagist at 73 modules per day. Figure 1.1, taken

from Module Counts, illustrates the growth of the Node module system compared

to various languages’ package managers. npm has been annotated for your viewing

pleasure.

5 http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
6 http://modulecounts.com/

Full Stack JavaScript Development with MEAN4

http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
http://modulecounts.com/

Figure 1.1. Growth of various package managers

With the sheer number of modules available, developers can typically find at least

one to solve just about any problem they encounter. (Of course, these modules are

in various stages of development, and not all are production ready.) As previously

stated, one of Node’s biggest use cases is the development of web servers. So, as

you might expect, there are a number of modules that implement web servers. The

most popular of these modules is Express, which currently powers more than 26,000

web applications around the world.7 Based on the Ruby language’s Sinatra frame-

work, Express is self-described as a “fast, unopinionated, minimalist web framework

for Node.js.”8 Express will be explored in detail over the course of several chapters

later in this book.

MongoDB
While Node was invading the server space, another movement was gathering pace

in the world of databases. For years, the primary method of working with data stores

had been to issue SQL queries to relational databases. Yet there’s another type of

data store that doesn’t rely on SQL. This class of database, known as NoSQL, doesn’t

7 http://expressjs.com/applications.html
8 http://expressjs.com/

5Introduction

http://expressjs.com/applications.html
http://expressjs.com/applications.html
http://expressjs.com/
http://expressjs.com/

even use the familiar table structures of relational databases. NoSQL databases store

data in a variety of formats, such as documents or key-value pairs, and are less rigid

and structured than relational databases. This lack of structure often leads to simpler

prototyping and ease of development. NoSQL databases tend to be slightly faster,

as there’s no need for them to enforce the rigid table structure of relational databases.

In 2007, a company named 10gen (now MongoDB, Inc.) began working on a NoSQL

database that would become a component in a planned platform as a service (PaaS)

offering. In 2009, the database known as MongoDB9 (a play on the word humongous)

was open sourced. MongoDB is a document-oriented database that stores information

as Binary JSON (BSON) documents. By using a flavor of JSON, Mongo is incredibly

simple to read and write objects from JavaScript code. Just as Node replaces another

server-side language with JavaScript, MongoDB replaces SQL with queries based

on JavaScript objects.

AngularJS
While JavaScript has always been a client-side programming language, its use in

the browser has changed drastically over time. Back in the Netscape Navigator days,

JavaScript was used for very simple page interactions. Use cases consisted of tasks

such as changing an image’s src attribute on mouse over or powering collapsible

menus. The effects were simple, but provided a level of interactivity unable to be

achieved with HTML alone.

As technology continued to evolve, JavaScript evolved with it. A major breakthrough

for web applications came with the widespread availability and adoption of high-

speed Internet. This opened the door for Ajax applications that make background

requests instead of full page loads. Network performance is key in Ajax applications,

as a slow connection will make the page appear unresponsive. Applications

gradually transitioned towards fewer and fewer page loads, and more Ajax requests.

Eventually, the Single Page Application (SPA) was born. In the strictest sense SPAs

have just a single page load, and request all other data via Ajax calls.

AngularJS10 is one of most popular frameworks for creating SPAs. Angular was

created in 2009 (a busy year for JavaScript) by Miško Hevery and Adam Abrons.

Angular owes much of its popularity to being backed by Google, Hevery’s employer.

9 http://www.mongodb.org/
10 https://angularjs.org/

Full Stack JavaScript Development with MEAN6

http://www.mongodb.org/
https://angularjs.org/

It applies a model-view-controller (MVC) approach to web applications, and has

several noteworthy features. First, Angular provides two-way data binding between

views and models. This saves developer time, as Angular automatically keeps

everything in sync. Another interesting feature of Angular is that many tasks, includ-

ing templating, can be done in augmented HTML.

Angular will be covered in greater detail later in the book, but it’s worth looking at

a partial example now to illustrate how powerful it really is. Here’s an Angular

controller named PeopleCtrl that sets the people property in the data model:

app.controller('PeopleCtrl', ['$scope', function($scope) {
 $scope.people = [
 {
 firstName: 'Colin',
 lastName: 'Ihrig'
 },
 {
 firstName: 'Adam',
 lastName: 'Bretz'
 }
];
}]);

Listing 1-2. A simple Angular controller that manipulates a model

The people property of the model is an array containing two simple objects repres-

enting people. Now here’s an Angular view template that can be used to display

the model data:

<div ng-repeat="person in people">
 {{person.lastName}}, {{person.firstName}}
</div>

Listing 1-3. A simple Angular view template

The <div> is just a standard HTML <div> element, while ng-repeat is known as

an Angular directive. This particular directive is employed to loop over the elements

of an array, and the double curly braces are used to access data from JavaScript. For

now, there’s no need to completely understand what’s going on here, just realize

that Angular takes care of a lot of tasks for you out of the box.

7Introduction

Summary
This chapter has introduced the concept of full-stack JavaScript, as well as some of

its most popular constituents. Using the technologies described here, it is possible

to create a production grade application using HTML, CSS, and JavaScript alone.

The combination of MongoDB, Express, AngularJS, and Node.js has become so

popular that it has earned its own title: the MEAN stack, whose logo can be seen

in Figure 1.2. This titling borrows from the LAMP stack, which consists of Linux,

Apache (web server), MySQL, and PHP.

Figure 1.2. The MEAN stack logo

The rest of this book explores the MEAN stack in detail. We’ll begin by covering

Node.js, as it will lay the groundwork for all our server-side work. We’ll learn how

to make Node run on your local machine as well as download modules using npm.

The key aspects of the Node.js programming model will also be covered.

From there, we’ll move on to MongoDB. We’ll learn how to interact with Mongo

from a Node application, as well as how to create, retrieve, update, and delete data

from a Mongo store. In covering Mongo, we’ll also learn how to access a MySQL11

database from Node.js. While not technically inline with the MEAN approach, rela-

tional databases are too popular to simply not acknowledge.

After gaining a solid grasp on Node and Mongo, we’ll move on to the Express web

server. We’ll cover the basics of Express applications via topics such as routes and

middleware. Building on previous chapters, we’ll cover the integration of Node,

Mongo, and Express. We’ll also introduce hapi.js,12 an alternative to Express. hapi

is an up-and-coming framework developed and battle-tested at Walmart.

11 http://www.mysql.com/
12 http://hapijs.com/

Full Stack JavaScript Development with MEAN8

http://www.mysql.com/
http://hapijs.com/

Our coverage of the MEAN stack will wrap up with several chapters on AngularJS.

These chapters will cover Angular fundamentals such as data binding, directives,

controllers, routing, and services.

Full-stack JavaScript is not fully encompassed by the MEAN stack. There is an entire

ecosystem of JavaScript tools to learn about, and this book will introduce a few of

them. We’ll cover task runners Gulp13 and Grunt,14 which are extremely useful for

automating mundane, repetitive tasks. We’ll also address JSHint,15 a linting tool

used to improve code quality. Linting tools analyze source code and report potentials

issues, a feature that’s especially useful in non-compiled languages such as JavaS-

cript.

We’ll conclude our exploration of the JavaScript tool ecosystem with discussions

on Node Inspector16 and Mocha.17 Node.js comes with a built-in debugger that is

anything but user-friendly. Node Inspector addresses this shortcoming by allowing

Google Chrome’s developer tools to act as a front end to Node’s built-in debugger.

Mocha, on the other hand, is a Node.js-based testing framework. We’ll show you

how to create and run individual tests and test suites.

If this sounds like a lot of material, you’re right. And if you think it’d make a lot

more sense with concrete examples, you’d be right again. Throughout the various

chapters, we’ll provide many standalone code samples that you can try out. Yet

we’ll also be developing a comprehensive example application along the way. The

example app is a human resources (HR) application that can be used for tracking

employees and teams in a small- to medium-sized company. This app will be de-

veloped over certain chapters sprinkled throughout the book.

It’s worth pointing out that there are several MEAN stack boilerplates in existence,18

but this book doesn’t use any of them. We feel that it’s better to understand all the

technologies independently rather than expect all applications to follow a single

format. Once you understand the basics of technology, picking up one of the boiler-

plates should be a piece of cake.

13 http://gulpjs.com/
14 http://gruntjs.com/
15 http://www.jshint.com/
16 https://github.com/node-inspector/node-inspector
17 http://visionmedia.github.io/mocha/
18 http://mean.io/

9Introduction

http://gulpjs.com/
http://gruntjs.com/
http://www.jshint.com/
https://github.com/node-inspector/node-inspector
http://visionmedia.github.io/mocha/
http://mean.io/

Chapter2
Node.js Introduction
To date, there have been over ten different server-side implementations of JavaS-

cript.1 While Node.js is the most successful, it is far from being the first. Engineers

have spent considerable time and effort trying to make JavaScript run on a web

server—but why? What is it about JavaScript that makes it so well-suited to being

a server-side language? Ultimately, it boils down to two factors: familiarity and non-

blocking asynchronous I/O.

Familiarity with JavaScript
Looking at GitHub usage,2 JavaScript is the prevailing language. As evidenced in

Figure 2.1, the raw amount of JavaScript code continues to grow, outpacing all the

other popular scripting languages available today. The graph represents the number

of new GitHub repositories created that list JavaScript as the primary language.

1 http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
2 http://redmonk.com/dberkholz/2014/05/02/github-language-trends-and-the-fragmenting-landscape/

http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
http://redmonk.com/dberkholz/2014/05/02/github-language-trends-and-the-fragmenting-landscape/

Figure 2.1. New GitHub repositories by language

JavaScript was created in 1995 by Brendan Eich during his time at Netscape Com-

munications Corporation. By 1996, the official ECMA specification had been sub-

mitted with both Microsoft and Netscape implementing JavaScript in their flagship

browsers. Over the subsequent twenty years or so, there have been new versions of

the ECMAScript specification, JavaScript libraries such as jQuery, client-side

JavaScript MVC frameworks, JavaScript controlling robots with Tessel,3 and the

rise of server-side JavaScript. If you have ever worked on a web page in the last

twenty years, you’ve had some exposure to JavaScript.

The ubiquity of JavaScript is one of the reasons why it is so attractive as a server-

side language. If the web server is written in JavaScript, developers that know

3 https://tessel.io/

Full Stack JavaScript Development with MEAN12

https://tessel.io/

JavaScript can be active contributors, regardless of their specialization. JavaScript,

the language, is the same both client-side and server-side using Node. Rather than

having people specialize in one part of development versus another, there is now

the opportunity to be a JavaScript developer and work on any aspect of a web ap-

plication. One single language can be used to complete an entire website without

requiring developers to learn multiple—sometimes wildly different—programming

languages.

One of the expressions you’ll often hear from people trying to learn Node is “It’s

just JavaScript.” The existing JavaScript knowledge base that has been building over

twenty years is still useful, and continues to be useful in Node.js programming. By

leveraging an already popular language in a different environment, Node.js instantly

turned any developer familiar with JavaScript into an entry-level full-stack developer,

just by sticking with JavaScript.

The Problem with I/O
Any non-trivial web server will eventually have to execute some I/O. The nature

of the I/O can be anything from reading from a disk, querying a database, or commu-

nicating with another web server. Even with modern computers, I/O is still the

slowest part of any system. Figure 2.2 presents an excellent summation of the cost

of I/O.

13Node.js Introduction

Figure 2.2. The cost of I/O4

Figure 2.2 illustrates that disk and network I/O are orders of magnitude slower than

RAM and CPU cache. For servers that have to respond to hundreds of thousands of

requests per minute, this cost can quickly grow into a crippling performance problem.

Let’s take a look at an imaginary web server that does a very common web server

task: communicate with a database.

An Example Web Server
Suppose we have a simple web server written in stock PHP and we know nothing

about threads or asynchronous programming. All this server does is take input from

the query string (after it’s sanitized for SQL injection attacks, of course) and run a

query on a database. When the database responds, the server will process the re-

sponse and send a view of the data back to the client, as shown in Figure 2.3.

4 Source: http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/

Full Stack JavaScript Development with MEAN14

Figure 2.3. Example request life cycle

Here are the steps of the life cycle:

1. A request comes in to the web server. The client has requested every car in our

database that is “red.”

2. A second remote server houses our corporate database. Our web server creates a

database query and sends it off to the remote server housing our database.

3. The database engine runs the query and assembles the results.

4. The database server responds to our web server with the results.

5. The web server receives the query results and turns them into JSON so that the

results are easier to process.

6. The server reads from the local file system to find an appropriate HTML document

to display the results.

7. The server responds to the request and returns HTML with all the red cars in our

database.

This is a typical request life cycle for many web servers. Looking through the life

cycle outlined and Figure 2.3, I/O latency is apparent during several of the steps.

Steps two, three, and four all introduce I/O: network, disk, and disk, respectively.

If we use the very rough numbers from the information given in Figure 2.2, we have

approximately 322,000,000 cycles wasted waiting for blocking I/O operations. I/O

activity that blocks other processing from happen in a running program is known

as blocking I/O.

15Node.js Introduction

If web servers only had to serve one person at a time, there would be no problem

with those 322,000,000 blocked cycles. Realistically, however, any public-facing

web server needs to be able to serve many thousand concurrent requests and have

extremely high uptime and low latency.

Suppose user A makes a request, and user B makes a request one millisecond later.

In our sample server, without any changes to the architecture or code, user B is going

to experience latency every time user A’s request does any I/O activity, plus the I/O

activity of their own request. Even with just a few users, you can start to see how

this would create a cascading problem.

Stepping Around the I/O Problem
I/O is not a new problem. As long as there have been web servers, engineers have

had to solve scalability issues. Many existing web servers built with more traditional

programming languages, such as Java or PHP, solve scalability concerns with threads

or parallel processes. While these approaches can help with the latency and I/O

issues of concurrent users, they are often complicated and require more hardware

as the load on the web server increases. Additionally, threads and parallel processes

aren’t free. Most companies have a finite amount of resources so increasing hardware

becomes cost-prohibitive at a certain point.

JavaScript (and Node) by convention is a non-blocking language. Rather than having

to solve the I/O issues after the language was created, it has a simple solution already

built into the core of the language: callbacks. A callback is a function that is executed

when I/O operations finish or produce an error. Instead of waiting and thus creating

latency for other users, an operation starts and a callback function is supplied. When

the I/O is complete, the supplied callback function executes. There is still a delay

in waiting for the I/O to finish, but other logic can execute freely during this time.

Thinking back to how JavaScript was initially used and designed, this pattern makes

sense. In JavaScript, functions are first-class citizens so they can be passed around

and declared as easily as an integer. Combined with the client-side uses for JavaS-

cript, such as event handling and Ajax requests, JavaScript was built to be non-

blocking and has been used in that fashion for many years.

In Ajax requests, a request is made (network I/O, because of the wait on the server)

and you supply a callback to it. At this point, the browser window is not blocked

and the user is still free to click on any enabled element on the page. When the re-

Full Stack JavaScript Development with MEAN16

quest completes, the callback supplied to the Ajax request is executed. Common

Node.js conventions recommend that developers follow this same pattern. While

many of Node’s core I/O function offer synchronous versions, both the community

and the Node documentation strongly encourage opting for the asynchronous ver-

sions.

Example Web Server Revisited
Let’s examine how our simple web server example would work using Node.js.

Functionally, it would be the same. As mentioned, the Node.js ecosystem is ex-

tremely vibrant thanks to the npm registry and GitHub, so any plugin or module

our PHP server was using almost certainly has a Node counterpart.

Let’s analyze how our new Node.js-powered web server will behave for user A and

B now. When user A's request reaches step two, an asynchronous call will be made

to the database server. A callback function will be passed along that's executed

when the response from the database server comes back. User B's request will be

right behind, and instead of having to wait for A to finish, B can start processing

immediately and queue up another request to the database server. No threads or

additional resources are required to service both requests. This will allow A and B

to have a latency equal to roughly the total time for all the I/O for each of their re-

quests, completely independent of how many other users may be making requests

of the web server.

This Doesn’t Magically Speed Up Requests to the Database Server

Remember, this will not speed up requests to the database server. It just prevents

the I/O activity from blocking additional service requests as they come in. This

allows our web server to handle more concurrent requests without requiring ad-

ditional hardware or configuration.

Real World Data
We’ve described the advantages that a server running JavaScript can bring, but let’s

look at some numbers. One of the big players in the Node.js arena is PayPal. They

rewrote their account overview page using Node.js and a wrapper around the Ex-

press.js framework. PayPal migrated from a Java web server to a JavaScript web

server and posted the performance benchmarks shown in Figure 2.4.

17Node.js Introduction

Figure 2.4. Node.js compared to Java web server5

The key points of this graph are:

5 Source: https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/

Full Stack JavaScript Development with MEAN18

1. The Node.js web server could handle double the number of requests per second

compared to the Java server. This is especially impressive because the Java web

server was using five cores and the Node.js server was using one.

2. There was a 35% decrease in the response times for the same page. This amounts

to about 200ms time savings for the user, a noticeable amount.

These results were published in 2013 on the PayPal Engineering site.6 Considering

PayPal was using an older version of the Node.js framework on only one core, we

can assume that these numbers would be even more impressive if they ran these

tests today. According to this article, the replacement server was built almost twice

as fast that the old version with fewer people and 33% fewer lines of code.

It’s results like this that continue to propel Node.js out of research and development

and into battle-tested, production-ready web servers that run faster, have lower

latency, are built with less resources, and usually cost companies less money because

of the reduced hardware needed when loads increase.

Your First Node.js Server
We’ve talked enough! Let’s set up our environment so that we can expand on the

server in Listing 1-1.

Installing Node.js
The preferred method of installing Node.js is to download it from the Node.js

website.7 Node.js is cross-platform and there are installation packages available for

Windows, OS X, and Linux. When the download is complete, install Node.js on

your computer. To verify that everything worked correctly, open a terminal and

type node -v. You should see a printout of the version of Node that’s currently in-

stalled.

REPL
One of the first things you’ll probably discover by accident is what happens when

you just enter node in the terminal without any arguments. The terminal input

character will change to > and the usual terminal commands won’t function. This

6 https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
7 http://nodejs.org/download/

19Node.js Introduction

https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
http://nodejs.org/download/
http://nodejs.org/download/

is normal. When you execute nodewithout arguments, you launch the Node.js REPL,

which stands for read-eval-print loop. REPL gives you a JavaScript sandbox to play

in. It can be treated as a Node.js script file, and all the usual functions and modules

are available in this environment. Go ahead and try out a few simple Node commands

by entering the following lines:

3+1
console.log('hello world')
var x = 5;
var http = require('http')

There are a few REPL-specific commands available to you, which can be displayed

by typing .help. We encourage you to play around with the REPL tool, especially

if you’re yet to feel comfortable with JavaScript for anything more than just client-

side event handling. REPL includes all the features of Node proper. It can be a great

place to try code presented in this book or from sources out on the Web.

Writing the Server
Launch your favorite text editor, because we’re going to write our first Node.js web

server. One of the nice aspects about using JavaScript is that all you need is a ter-

minal and a text editor—no complicated or bloated IDE is required.

Create a file called app.js and copy the contents of Listing 1-1 into it. It should look

like this:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Listing 2-1. A trivial web server written in Node

Listing 2-1 is the default Node web server that’s often shown in examples of Node.

The aforementioned code snippet will respond with “Hello World” any time you

make a request to http://127.0.0.1:1337. You can verify this using either a web

browser or the curl command in a terminal window.

Full Stack JavaScript Development with MEAN20

Let’s refactor this example server to show what can happen when I/O is introduced

into the web server. We’ll make a simple web server that sends the contents of the

currently running file back to the requesting client. Listing 2-2 uses both http and

a new module: fs for “file system.” In a future chapter, we’ll delve deep into the

details of both fs and http, so don’t worry if you feel a little lost right now. We’ll

cover the high level of what is happening with the new fs calls that follow:

var http = require('http');
var fs = require('fs');

http.createServer(function (req, res) {
 if (req.url === '/favicon.ico') {
 return res.end();
 }
 console.log('Incoming request to ' + req.url);

 var i = 2;
 res.writeHead(200, {'Content-Type': 'text/plain'});

 setTimeout(function() {
 fs.readFile(__filename, {
 encoding: 'utf8'
 }, function (error, contents) {
 if (error) {
 console.error(error);
 return res.end();
 }

 console.log('sending response for ' + req.url);
 res.end(contents);
 });
 }, 5000);

 while(i--) {
 console.log('Loop value: ' + i + '\r');
 }
}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

Listing 2-2. A Node server with file I/O

21Node.js Introduction

The core of the code is the same as Listing 2-1. We’ve created a server and are

listening on local port 1337. We are writing the data to res, our response object,

the same as before. We needed to add the check for /favicon.ico because some

browsers request these files unexpectedly and that would change our results. The

while loop is just to add some synchronous code to demonstrate what happens

when you mix synchronous and asynchronous code. fs.readFile reads a file from

the disk into a buffer. When the read is complete, the supplied callback is executed

and passed in an error object and the file contents. __filename is one of several

global objects; it just gives us the path to the currently executing file.

Our Server in Action
Start the server and open two (or more) tabs in your browser of choice. In one tab,

make a request to http://localhost:1337/one and in another tab, quickly make

a request to http://localhost:1337/two; then watch the terminal for the logged

output. You should see a log entry about an incoming request, information about

our while loop, an entry about another incoming request, and then the while loop

again. Finally, a response will be sent back to the requesting client—the very file

that is currently executing.

The terminal output from the server should be very similar to this:

Incoming request to /one
Loop value: 1
Loop value: 0
Incoming request to /two
Loop value: 1
Loop value: 0
sending response for /one
sending response for /two

Listing 2-2 demonstrates the non-blocking nature of JavaScript and Node. When

the first request comes in, it executes setTimeout and we supply a callback function.

The second request is still queued and has yet to begin processing. JavaScript recog-

nizes that setTimeout is an asynchronous call, queues up the supplied callback

function, and continues linear execution. The while loop will execute and then

stop for this request because there is no more synchronous code to execute for /one.

The request to /two can start processing. Again, once the code finishes the while

Full Stack JavaScript Development with MEAN22

loop, other requests can be serviced if there are any. Neither new requests nor the

while loop have to wait the 5,000 milliseconds to start processing.

Once the 5,000 milliseconds have elapsed, the callback function supplied to set-

Timeout will execute and we will try to load the currently executing file. Again, we

pass another callback function into fs.readFile that will run after the file is com-

pletely loaded into a buffer. During that time, other requests could be queued up

and start executing synchronous code, exactly like the window during the set-

Timeout. After the file is read into a buffer, we call res.end(contents) and send

the results back to the requesting client. This simple web server is meant to

demonstrate that even though there is I/O happening, more requests can be made

to the server and synchronous code can execute without waiting for the I/O to finish.

The next chapter will go into the nuts and bolts of Node to provide a better idea of

how the callback system works, as well as how to leverage it in our own web servers

to increase throughput.

Summary
This chapter introduced Node.js, the most successful server-side implementation

of JavaScript. We discussed the reasons why Node has been successful as a server-

side technology: because it uses a language that's familiar to many developers ―
JavaScript ― and that it provides non-blocking asynchronous I/O. We finished the

chapter by writing our first trivial Node server.

In the next chapter, we're going to discuss how Node's modules and the Node

package manager (npm) work.

23Node.js Introduction

Chapter3
Modules and npm
As we discussed in Chapters 1 and 2, one of the keys to the success of Node is the

wide array of modules that are available to developers. There are open-source

modules on GitHub for the majority of problems developers face when building a

web server. Then there are modules available for social authentication,1 validation,2

and even server frameworks such as ExpressJS3 and Hapi.4 Not every module is

massive and complicated, though; there are simple modules for coloring console

text,5 formatting dates and times,6 and cloning7 JavaScript objects.

As developers, we try not to reinvent the wheel if we can help it. We preach “code

reuse” constantly and Node does not disappoint in this area. To fully appreciate

the Node ecosystem, it is important to understand how modules and the Node

package manager (npm) function.

1 https://github.com/jaredhanson/passport
2 https://github.com/hapijs/joi
3 https://github.com/visionmedia/expressjs.com
4 https://github.com/hapijs/hapi
5 https://github.com/marak/colors.js/
6 https://github.com/moment/momentjs.com
7 https://github.com/pvorb/node-clone

https://github.com/jaredhanson/passport
https://github.com/hapijs/joi
https://github.com/visionmedia/expressjs.com
https://github.com/hapijs/hapi
https://github.com/marak/colors.js/
https://github.com/marak/colors.js/
https://github.com/moment/momentjs.com
https://github.com/pvorb/node-clone

npm
npm is the package manager for Node. It is a Node module that is installed globally

with the initial installation of Node. By default, it searches and loads packages from

the npm registry.8 In addition to being a package registry, it also acts as a user-

friendly resource for developers to discover new modules. npm is the heart of the

Node module ecosystem, so let’s now discuss some of the commands you need to

know to use it effectively.

npm install
npm install, like many of the npm commands, can perform many different tasks

depending on the arguments supplied. Simply executing npm install will install

all the modules listed in the package.json file in the current directory. We’ll talk

more about the package.json file in a moment, but for now, think of it as a list of

module names. npm install will look at the package.json file and install all the

listed modules into a local node_modules folder.

Generally, when starting a new project that you’ve pulled from a source control

provider, this is the first step to getting the code to run properly. This will give you

the correct environment and dependencies, allowing you to be up and running very

quickly.

npm install <name> tries to install the most recent version of the module <name>

into the local node_modules folder. When you find a module that you’d like to try,

simply install it with npm install name and npm will handle the rest. As a simple

exercise, open up a terminal and type the following:

npm install colors

If you are watching the terminal, you should see several GET requests and 200 status

codes. Those requests and responses is npm calling out to the npm registry, looking

for the module-named colors, and downloading it into the local node_modules

folder.

8 https://www.npmjs.org/

Full Stack JavaScript Development with MEAN26

https://www.npmjs.org/

Global versus Local Installations
npm installwithout any modifying arguments will always install the Node modules

locally in the node_modules folder of the current directory. This is generally the

desired behavior; however, some modules can be run directly from the command

line. Think of these global modules as new commands that are written using Node

and JavaScript. These kinds of modules are ones that you might want to use outside

of a particular project and have access to them globally. We’ve already encountered

one global module already: npm. Another example of this is the express-generator

module. express-generator adds a command to the terminal that lets the user create

a generic ExpressJS application server (file structure and boilerplate code) with a

single command and some arguments.

Since we will be using this module later, let's install it globally now. Type this into

your terminal:

npm install express-generator --global

Unless you have made changes to the permissions of your file system, you will get

an EACCES error during the installation. This is normal. The EACCES error means

that npm lacks permission to write to the location that global modules are installed.

A quick Google search will net you several ways to solve this problem, but we’re

going to present the one that is without added security issues and does not require

running npm as a more privileged user.

Global Installation Setup
In a terminal, navigate to your home directory and run npm config set prefix

~/npm. This will configure the prefix option globally for npm. You can verify that

this worked correctly by running npm prefix, and the results should point to a

directory under the current user ending with /npm/bin. This command tells npm

to read and write from this directory during global operations instead of the default

location, to which the current user probably lacks the permission to write.

Your last task will be to ensure that “~/npm” is included in your $PATH variable. If

you skip this step, you won’t be able to run any of the global modules easily from

the command line and will instead have to provide a complete path to the module

in the ~/npm folder.

27Modules and npm

Setting the $PATH

$PATH is an environment variable found in Unix-like operating systems. It is a

list of directories where executable programs are located. Applications rely on

this value to help look up external applications when running. For example, if

you’re employing an IDE (integrated development environment), it will use the

$PATH value to find items such as external compilers, debuggers, or installed

source-control applications. It is referred to as %PATH% in Windows operating

systems.

Trying to reinstall the express-generator module should work fine now with no

EACCES errors. This is a one-time setup and going forward, global module installa-

tions will be seamless. To make sure express-generator was properly installed,

create a temporary directory and navigate your command line to it. Run express

and you should see notifications that several files and directories are being created.

If you list the folder contents, you should see app.js, package.json, and several sub-

folders.

npm search
npm search is a quick way to query the npm registry without leaving the terminal.

Suppose you wanted to display a file that was written in Markdown. Remember,

you are entering into the Node module ecosystem—there are well over 20 existing

modules for working with Markdown. In most cases, it would make no sense trying

to write your own. Existing modules already have tests and have been vetted by the

community over time. So rather than rolling your own, let’s try to find one on the

npm registry.

In a terminal, enter npm search markdown. The first time you run the search com-

mand, it will take a while; this is normal. When the results come back, you’ll see a

long list of all the available Node modules that contain "markdown" either in the

title, description, or tags.

At this point you could pick and install one using npm install <name>. If you want

to learn more about the package and read up on the documentation, try npm docs

<name>. If the package is properly configured, it should launch a web browser and

take you to the module’s home page.

Full Stack JavaScript Development with MEAN28

If you prefer an alternative to the command line for searching, you can go directly

to the npm home page and use the search feature provided there.9 The search results

show module popularity, number of stars, dependency lists, and other useful data

points.

npm, both the command and the website, is a vital piece of the Node ecosystem.

We have only touched on a few important commands to be up and working quickly.

We encourage you to check out the npm documentation to learn more of the com-

mands.10 Further in this chapter, we’ll discuss one more npm command in depth:

npm link.

package.json
We now know that running npm install will look for a package.json file and install

the packages listed there. Let’s examine a simple package.json file:

{
 "name": "hr",
 "version": "1.0.0",
 "scripts": {
 "start": "echo \"Run the correct js file to start your
➥application\" && exit 0",
 "populate": "node ./bin/populate_db"
 },
 "dependencies": {
 "async": "0.9.0",
 "debug": "0.7.4",
 "express": "4.2.0",
 "mongoose": "3.8.11"
 }
}

Listing 3-1. A sample package.json file.

Let’s discuss each of the top-level keys of this file:

■ name: is the name of the module. Generally, this is the <name> argument given

to npm install <name>. This is required, but only needs to be unique if you

9 https://www.npmjs.org/
10 https://www.npmjs.org/doc/

29Modules and npm

https://www.npmjs.org/
https://www.npmjs.org/doc/
https://www.npmjs.org/doc/

plan on publishing the module to the npm registry. The name shouldn’t have

“node” or “js” in it. You should also avoid using any non-URL-safe characters,

because name is used to create a URL when it’s on the npm registry.

■ version: is the version of the package expressed as major.minor.patch. This is

known as semantic versioning, and it is recommended to start with version 1.0.0.

■ scripts: This key serves a unique purpose, providing additional npm commands

when running from this directory. For example, if you entered npm run start

inside a folder with this package.json file, you’ll see “Run the correct js file to

start your application” logged in the terminal. If you run npm run populate,

npm will try to execute node ./bin/populate_db. This file is yet to exist, so

the command will fail. The key can be any valid JSON key and the value can be

a node command or a shell script.

■ dependencies: This is generally where the majority of information in any

package.json file is stored. dependencies lists all the modules that the current

module or application needs to function. The key is the module name and the

value is the version of the module that’s required. There are many ways to express

a version inside the package.json file. You can state specific versions or a range

of versions by combining >=, ~, and ^ (for example, >= 0.9.x,~3.x, and ^0.5.x).

It is also possible to set a version to point directly to GitHub: "git://git-

hub.com/flatiron/winston#master", for example. The specifics and details of

npm versioning can become extremely complicated, especially when working

with ^, ~, and modules with versions less than 1.0.0. For a complete write-up

about the semantic versioning npm uses, read the documentation on Github.11

Trying to write a package.json line by line in a text editor is not recommended. npm

has a built-in command that will walk you through creating a valid file. Run npm

init in the terminal and it will guide you through a series of prompts. This will

generate a simple package.json file that’s in line with the community standard and

the latest specification from npm.

npm init is pretty self-explanatory about what each of the fields means. The one

exception is the main value. main should be the filename or path to the JavaScript

that should be used when a user requires your module. In general, the default

value of index.js is fine.

11 https://github.com/npm/node-semver

Full Stack JavaScript Development with MEAN30

https://github.com/npm/node-semver

Now that we have a package.json file in the current directory, let’s try npm install

again with with some new arguments:

npm install colors --save

This command will install colors into the node_modules directory, and also update

dependencies inside package.json to include an entry for the colors module. Now

the next developer can simply type npm install and be ready to code, avoiding

time wasted looking for modules referenced in the code.

The node_modules Folder
As we have demonstrated, the node_modules folder is where npm installs local

modules. This is also the first place Node looks when you require a module. Let’s

install the ExpressJS framework and examine its node_modules folder.

In a new folder, install Express via npm install express. If you open this location

with a file browser or terminal, you should see a node_modules folder. If you keep

drilling into this directory, you’ll soon realize that many of the submodules have

their own node_modules folder. This is how Node handles modules that depend on

other modules.

Module Dependencies
Looking closer at the file structure, several of the subfolders inside express have

their own node_modules folder. Let’s look inside the send directory. Its structure

looks like this:

|send
|-lib
|-node_modules
|---finished
|-----node_modules
|-------ee-first
|---mime
|-----types

Listing 3-2. Node module directory structure

31Modules and npm

Express uses the send module, which in turn uses the finished and mime modules.

finished also uses the ee-first module. By looking at the tree structure, it becomes

easy to visualize a module’s dependencies and subdependencies.

Because every module has its own node_modules folder, you’ll probably see duplic-

ation. For example, if another module that Express uses requires ee-first as well,

the ee-first folder would appear a second time in a different location.

By forcing every module to have its own node_module folder, rather than having a

single directory of every module, it allows developers to be very specific with the

particular module’s version that they want to use. For example, if module A used

version 1 of the “cookie” module, but module B was using version 2.x, there could

be no guarantee that module A would continue to function properly if every module

was saved into the same folder. How would npm decide which version to install

in a global module directory?

require()
The require function is specific to Node and is unavailable to web browsers. At

its core, all require does is execute JavaScript based on the supplied argument.

When you require a module, you execute the JavaScript code that makes up the

specified module. Node then returns an object that has function and values attached

to it, just like any other JavaScript object.

Looking back through the code examples, you may have noticed require('http')

in a few different places. Let’s re-examine the simple server from Listing 1-1:

var http = require('http');
http.createServer(function (req, res) {...}).listen(1337,
➥'127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Listing 3-3. Simple Node server with logic removed

The code in Listing 3-3 should look familiar; this is the example Node server we’ve

talked about several times already in the first two chapters of the book. It’s a very

basic web server that listens for requests on host 127.0.0.1 on port 1337. We’ve

removed most of the internals of the code so that we just focus on the require logic.

On the first line, we are setting the http variable to the result of require('http').

Full Stack JavaScript Development with MEAN32

require('http') will cause Node to try to locate a module named http in a series

of predefined locations. If the named module cannot be found in the current location,

Node will try the next one. The lookup procedure roughly works in this way:

1. Check to see if the module named is a core module.

2. Check in the current directory’s node_modules folder.

3. Move up one directory and look inside the node_modules folder if present.

4. Repeat until the root directory is reached.

5. Check in the global directory.

6. Throw an error because the module could not be found.

This list sums up the primary points of the Node module lookup algorithm. There

are more details in the official documentation,12 but these steps should be enough

for the most common use cases.

Node will make several attempts to find the required module before throwing an

error. In the case of the http module, because it’s a core module it will only have

to go to step 1. The module has been resolved, the code for the http will execute,

and a JavaScript object will be returned that has functions and values attached to

it. createServer() and STATUS_CODES are examples of data attached to the resultant

http object. If you want to see the full http module, check the Node source code.13

Looking at how require works when passed a module name should solidify the

discussion about the package.json file and how important the name key is. The name

key is not only what’s used to install a module with npm, but also how it’s included

in your code for use.

Let’s look at another example. Write this into a script file:

12 http://nodejs.org/api/modules.html
13 https://github.com/joyent/node/blob/master/lib/http.js

33Modules and npm

http://nodejs.org/api/modules.html
https://github.com/joyent/node/blob/master/lib/http.js

require_test.js

javascript
var colors = require('colors');
console.log('Hello world'.green);

Listing 3-4. Requiring non-core module

We want our console logs to really pop, so let’s colorize them! colors is not a core

module, so Node will start a recursive lookup to try finding a module with the name

colors as specified in its package.json file.

Go ahead and execute node require_test. If you’ve previously installed the colors

module from earlier in this chapter, you should see “Hello world” logged to the

console in green. If not, you will see an error such as Error: Cannot find module

'colors'. Install the colors module and rerun require_test.js.

Other Uses for require
The colors module is a good example of a node module that’s easy to install and

use. It also demonstrates another facet of require(). Looking back to Listing 3-4,

you’ll notice that the code is "Hello world".green. The code is invoking a green

method on a string object. Unaltered String objects are without a green method,

so the colors module added various color methods to the String prototype.

Remember, at its core requiremerely executes some JavaScript code. In the example

of the colors module, it returns an object, but it also attaches items to the String

prototype chain. require can be used to execute "run once" code as well, such as

database initialization, constructing log singletons, changing built-in types and ob-

jects, and any other single-run code.

require can also accept a path to a file. This is useful for modules that you don’t

plan to publish the the npm registry. Shortly, we’re going to write a simple module

that we can reuse across multiple files. You can load the module with the following

command: var ourModule = require('./path-to/our-module').

The ability to point require at any arbitrary files allows developers to break their

applications down into smaller parts and keep logic housed in single modules. In

any web server, there is going to be boilerplate initialization logic. Instead of being

forced to have this logic in the main application code, it can be housed in a separate

Full Stack JavaScript Development with MEAN34

file and executed with require once in the main application startup. If you create

several applications that all share some boilerplate code, this small JavaScript file

could even be shared across multiple projects.

Writing a Module
The final section of this chapter is going to cover writing our own module that we

can use in an example Node script. We’re going to create a very simple module that

exposes several math functions. Let’s name it “mmm” for MEAN Math Module.

Before we start writing the module, one quick note about a Node convention. While

writing or viewing Node code, you’ll often see exports, require, and module that

seem to lack a definition. All JavaScript files that Node executes are automatically

wrapped in a function with several parameters passed into it:

(function (exports, require, module, __filename, __dirname) {
 // The code we write will be here
});

Listing 3-6. Node automatic wrapping function

Node wrapping developer code in this way has several advantages. First, it helps

prevent accidental global variables. This wrapping code creates an additional scope

level that prevents improperly declared variables from being globally accessible. A

second advantage is that every Node file automatically adheres to this predefined

pattern.

It should now be clear why we have access to exports and require in our own

code. They are automatically passed in to every file that is executed. Don’t write

that wrapping function; let Node put it there for you, in case it ever changes in

subsequent versions. If you’d like to see how this works, check out the Node source

code for this feature.14

14 https://github.com/joyent/node/blob/master/src/node.js

35Modules and npm

https://github.com/joyent/node/blob/master/src/node.js
https://github.com/joyent/node/blob/master/src/node.js

Module Functionality
Before we dive right into the Node and module aspects, let’s write some JavaScript

code that executes basic math functions— addition, multiplication, and factorial—on

integers:

mmm.js

function add (number1, number2) {
 return parseInt(number1, 10) + parseInt(number2, 10);
}

function multiply (number1, number2) {
 return parseInt(number1, 10) * parseInt(number2, 10);
}

function factorial (number) {
 if (number === 0) {
 return 1;
 }
 else {
 return number * factorial(number - 1);
 }
}

Listing 3-7. Math module internals

This is the main functionality we want to expose from our module; it’s just regular

JavaScript at this point. We’re yet to write any code to hook into Node’s module

system, but looking back at Listing 3-6 will give us a hint at how to do so.

There is an exports object available in scope, which is used to export functions

from a module. Update mmm.js to make use of the exports object similar to Listing

3-8:

mmm.js (updated, excerpt)

exports.add = add;
exports.multiply = multiply;
exports.factorial = factorial;
exports.now = Date.now();

function add (number1, number2) {...}

Full Stack JavaScript Development with MEAN36

function multiply (number1, number2) {...}

function factorial (number) {...}

function privateMethod () {...}

Listing 3-8. Math module exporting

We’ve removed the internals of the function implementation for clarity. The Node

module framework uses the exports object during the initialization of the module.

On the first three lines of the file, we are attaching the add, multiply, and

factorial functions to the exports object. Remember, JavaScript is loosely typed,

so developers are free to attach functions and values directly to exports using the

dot (.) operator. There are some restrictions to the keys you can attach to exports,

but as a rule of thumb, just avoid using any built-in Object function names such

as hasOwnProperty. We’ve also attached the now property that we’ll use a little later.

Only the values attached to exports will be available outside of the module. If you

wanted some reusable code inside this module, but did not want it to be exposed

outside this module, avoid attaching that function to exports and it will be unavail-

able. We’ve included privateMethod as an example. It isn’t exported outside of

mmm.js so it will only be usable inside this file.

Finally, in the same directory as mmm.js, create a simple test for this module:

test.js

var m = require('./mmm');

console.log(m.add(3,5));
console.log(m.multiply(4,5));
console.log(m.factorial(4));

Listing 3-9. Math module test

Enter node test.js in the terminal and you should see the results printing out.

The very first line we’re calling require and supplying a file path, so the require

function will try to execute the file at that location. In mmm.js, we’ve declared a few

simple functions and attached them to the available exports object. The exports

37Modules and npm

object is used by the Node module framework to return a result object that’s assigned

to m. m has the add, multiply, and factorial function attached to it that, in turn,

point to the functions inside mmm.js. This is how all the Node modules that you’ll

encounter in the ecosystem work.

Because the argument to require is a file path, a package.json file for this module

is unnecessary; we have written a module for our own local use.

Caching
Now that we’ve written our own module, we should quickly touch on module

caching. When you require('./mmm') in Listing 3-9, it runs the JavaScript inside

the mmm.js file and returns an object. Under the hood in the Node module system,

the result of require is cached after the first time it’s called for a specific module.

This means multiple calls to require('./mmm')will always return the same instance

of the mmm module. Because the same module is often required many times in a

single Node application, caching is used to mitigate the performance overhead. One

important caveat is that the cache key used is based on the resolved file name. So

if a program requires mmm multiple times, but the required path is different (re-

quire("mmm") versus require('./othermodule/node_modules/mmm')), it’s enough

to “break cache,” and this would be treated as loading a new module.

This is easier to understand with a simple demonstration such as Listing 3-10:

var m = require('./mmm');

console.log('time after first require ' + m.now);

console.log(m.add(3,5));
console.log(m.multiply(4,5));
console.log(m.factorial(4));

setTimeout(function () {
 m = require('./mmm');
 console.log('time after second require ' + m.now);
}, 5000);

Listing 3-10. Module caching

If you run the updated test, you’ll see that the time doesn’t change, even though we

used setTimeout and reran require('/.mmm'). now is set when "./mmm" is run, so

Full Stack JavaScript Development with MEAN38

why didn't it change when we ran it a second time with the second call to require?

This is the Node module caching system in action. The module system knows that

it has already loaded mmm from “./mmm” before, so the code to create it has no need

to run a second time. In Listing 3-10, the line in mmm.js to set now only runs a single

time, so now is set the first time the module is loaded with require. It’s important

to keep this in mind as you continue to create your own Node modules. A full ex-

planation of module caching can be found here on the Node.js documentation.15

npm link
There is one more npm command that is worth covering now that we know how to

write our own modules: npm link. Suppose we wanted to move mmm to a new folder

and project so that we could work on it in isolation. One way to keep the module

functional inside test.js is to change the path parameter of require to point to the

new location.

Another option is to use the npm link command to set up a global symbolic link to

the module. This will let you require the module as if it were installed in a project’s

local node_modules folder. Setting up an npm link is a two-step process.

npm link Step 1
First, move mmm.js into a new folder named math-module and open a terminal in

the math-module directory. Next, create a package.json file now that we’re going to

use this module outside a single project. Do you remember the command to initialize

a package.json without writing it by hand? When prompted for a module name, name

it mmm. From within the math-module folder, run npm link. The response will be

/your/global/modules/path > /the/directory/you/ran/the/command/from.

This is telling us that there is a symlink created for the global Node modules folder

to the math-module directory.

npm link Step 2
Go back to the folder in which test.js is stored. In that folder, enter npm link mmm

in the terminal. Again, you will see path information alerting you to the location

of the linked module. Looking back at Listing 3-9, the path we supplied to require

is no longer valid. We are now treating the math module as if it were a community

module that should be loaded from the node_modules folder. Remember, require

15 http://nodejs.org/api/modules.html#modules_caching

39Modules and npm

http://nodejs.org/api/modules.html#modules_caching

can take several arguments, and one of them is a module name. We created a symlink

in step 1 and named our module mmm in the corresponding package.json file. Let’s

update test.js to require our module by name:

test.js

var m = require('mmm');

console.log(m.add(3,5));
console.log(m.multiply(4,5));
console.log(m.factorial(4));

Listing 3-11. Link update for test script

After all the links are set up, try running node test.js again. It should work exactly

the same as before. By setting up a link, we have separated the module we want to

write from the application that’s using it. This allows us to work on the module

decoupled from the testing code. Because npm link is essentially just a symbolic

link with some extra npm features, any changes you make to the math module going

forward will continue to be reflected in test.js.

Summary
In this chapter, we discussed how Node's modules and npm work. We started by

introducing npm, node's package manager that searches and loads packages from

the npm registry. We examined the structure of the package.json file that npm uses

to install packages. We also discussed the node_modules folder, which is where npm

installs local modules, and how we can use require() to load modules. We finished

by writing our own module that we can use in an example Node script.

In the next chapter, we're going to discuss Node's programming model.

Full Stack JavaScript Development with MEAN40

Chapter4
Node’s Programming Model
A language’s programming model defines how developers write code, and can make

or break a language. Since Node is just JavaScript, the rules of the language are the

same; however, Node does adhere to a number of additional conventions that make

code consistent across its core and third-party modules. In Chapter 2, you learned

how to create a simple HTTP server in Node. The goal of this chapter is to help you

better understand the code structure of that server so you can extend it to other

Node applications.

The Event Loop
The most important concept to understand about JavaScript, and Node by extension,

is that it is single-threaded. This means that JavaScript applications can only perform

one task at a time. They can, however, give the illusion of being multi-threaded

through the use of an event loop. Essentially, the JavaScript engine maintains sev-

eral queues of unhandled tasks. These queues include things such as events, timers,

intervals, and immediates. Each execution of the event loop, known as a cycle,1

causes one or more tasks to be dequeued and executed. As these tasks execute, they

1 https://github.com/joyent/node/issues/7703#issuecomment-44692636

https://github.com/joyent/node/issues/7703#issuecomment-44692636

can add more tasks to the internal queues. Each cycle is made up of smaller steps,

known as ticks. An example of a tick would be the act of accessing an item from

timer queue.

Concurrent Execution

There are a few ways to achieve concurrent execution in JavaScript. The most

common example is Web Workers, which execute code in separate threads. In

Node, you can fork child processes using the child_process and cluster

modules.

Listing 4-1 shows a simple example that executes across multiple event loop cycles:

console.log('one event loop cycle');

setTimeout(function() {
 console.log('different cycle');
}, 100);

console.log('same cycle');

Listing 4-1. Code that executes across multiple event loop cycles.

This example prints three strings to the console. The order in which the strings are

logged speaks to the event loop cycle in which they are executed. The output of

this code is shown in Listing 4-2:

$ node event-loop.js
one event loop cycle
same cycle
different cycle

Listing 4-2. Console output from running the code in Listing 4-1.

Notice that the console.log() inside the setTimeout() is executed last, despite

being second in the source code. This happens because the setTimeout() function

queues up the code to run in a future cycle.

Full Stack JavaScript Development with MEAN42

The Illusion of Concurrency
The event loop allows JavaScript applications to appear multi-threaded when indi-

vidual tasks run quickly. Unfortunately, it’s all too simple to make this illusion

come crashing down with a few lines of code. As an example, Listing 4-3 creates

two intervals that repeatedly print to the console. One interval prints Task A, while

the other prints Task B:

setInterval(function() {
 console.log('Task A');
}, 10);

setInterval(function() {
 console.log('Task B');
}, 15);

Listing 4-3. An example containing two interval tasks.

If these intervals were truly executing concurrently, any changes to one task would

not affect the other. To prove this is not the case in JavaScript, Listing 4-4 introduces

an infinite loop into Task B:

setInterval(function() {
 console.log('Task A');
}, 10);

setInterval(function() {
 while (true) ;
 console.log('Task B');
}, 15);

Listing 4-4. An infinite loop destroying the illusion of concurrency in JavaScript.

If you run this modified code, Task A is printed to the console after ten milliseconds,

but then nothing else happens. When Task B runs for the first time, it enters into

an infinite loop. This prevents control from ever being returned to the event loop,

and therefore Task A never runs again. If these tasks were executing in separate

threads or processes, Task A would continue to execute while Task B looped.

43Node’s Programming Model

Asynchronous Coding
Node.js is practically synonymous with with asynchronous application design,

particularly asynchronous I/O operations. As you learned in Chapter 2, I/O is ex-

tremely slow. Most languages perform synchronous I/O (also known as blocking

I/O) which means that they begin some I/O operation (such as a disk read, network

call, and so on) and then sit idle until the operation completes. Typically, languages

that use blocking I/O calls are also multi-threaded; therefore, while one thread is

idle, another thread can perform some meaningful work. Of course, as you’ve already

seen, JavaScript is single-threaded. If Node were to block an I/O call, the entire ap-

plication would come to a screeching halt until the I/O finished because there are

no other threads available to perform work.

To avoid the performance penalties associated with blocking I/O, Node.js almost

exclusively uses asynchronous non-blocking I/O. Under this paradigm, an application

will initiate some long-running external operation such as I/O; however, instead of

waiting for a response, the program will continue executing additional code. Once

the asynchronous operation is finished, the results are passed back to the Node

application for processing.

This seems simple enough in theory, but there is still one big unanswered question:

how are the results of an asynchronous operation passed back to a Node application?

There are a few ways it can be done. The three most popular ways in Node are

callback functions, event emitters, and promises. There have been many passionate

arguments fought over which way is the right way, but in the end it all comes down

to personal preference. In the Node core, callback functions have been the primary

winner, with event emitters coming in second. Promises have been fairly successful

in third-party modules, and are used quite a bit in AngularJS, so we’ll touch on

them as well.

Callback Functions
Simply put, a callback function is a function that’s invoked at the completion of an

asynchronous operation with the results of the operation passed as function argu-

ments. Listing 4-5 provides an example of asynchronous code that invokes a callback

function:

Full Stack JavaScript Development with MEAN44

var fs = require('fs');

fs.readFile('README.txt', 'utf8', function(error, data) {
 if (error) {
 return console.error(error);
 }

 console.log(data);
});

Listing 4-5. Asynchronously reading a file using a callback function.

This example utilizes the core fs module, which contains functions for working

with the file system. We’re using the fs.readFile() method to—as the name im-

plies—read a file. readFile() takes three arguments: the name of the file, the

character encoding used in the file, and a callback function that’s invoked once the

file is read. In this example, we’re reading the file README.txt using UTF-8 character

encoding.

The call to readFile() causes file system I/O to occur. Once the I/O completes, the

readFile() callback function is invoked with two arguments. The first argument,

error, represents any potential exceptions that occurred while reading the file. For

example, if README.txt does not exist, error will contain an Error object. However,

if the file exists and there are no problems reading the data, error will be null and

data will be a string containing the contents of the file.

Calling Conventions
In order to make coding more consistent across Node projects, the community has

adopted certain conventions. While not rules of the language, these are considered

best practices, particularly on projects with more than a single developer. Two of

the most universally accepted conventions are shown in Listing 4-5. The first is the

idea that when passing a callback function as an argument, it should be the last ar-

gument. Adopting this convention makes your code read better, as you can see all

the input arguments, followed by the continuation function.

Another calling convention shown in Listing 4-5 relates to error handling. Notice

that error is the first argument to the readFile() callback. If an error can be passed

to a callback function, Node convention dictates that it will be the first argument.

This may seem arbitrary, but it makes error handling more of a priority for de-

45Node’s Programming Model

velopers. Think about it like this: if the error argument came last, many developers

would simply ignore it. In fact, if the error came last, you could write your callback

function such that the error argument is omitted completely. By making the error

come first, you’re saying “hey, something could have gone wrong and you need to

check for it.”

There is another common convention related to method naming that’s not shown

in Listing 4-5 but is worth pointing out. As previously mentioned, asynchronous

code is the norm not the exception in Node; however, synchronous code does have

its place (initialization code, shell scripts, and so on). To help make code more

understandable, many synchronous functions have the string Sync appended to

their names. This is especially common in the fs module,2 as there are synchronous

and asynchronous versions of most methods. For example, Listing 4-5 used the

readFile() method, but it could have been written using the synchronous read-

FileSync() method as shown in Listing 4-6:

var fs = require('fs');

try {
 var data = fs.readFileSync('README.txt', 'utf8');

 console.log(data);
} catch (error) {
 console.error(error);
}

Listing 4-6. Synchronous equivalent of Listing 4-5.

Exception Handling
Notice that the synchronous code in Listing 4-6 uses a try...catch statement to

handle errors, while the asynchronous version does not. This is a key difference in

asynchronous code that you absolutely must understand. When an asynchronous

function call is made, program execution continues while the asynchronous call

completes. During this time, the application’s call stack changes.

A try...catch statement is incapable of catching asynchronously thrown errors

because the error is not thrown inside the try...catch. An example illustrating

2 http://nodejs.org/api/fs.html

Full Stack JavaScript Development with MEAN46

http://nodejs.org/api/fs.html

this point is shown in Listing 4-7. In this example, if an error occurs while reading

the file, the callback function will rethrow the error; however, because the callback

function was invoked asynchronously, the try...catch is unable to handle the

error:

var fs = require('fs');

try {
 fs.readFile('README.txt', 'utf8', function(error, data) {
 if (error) {
 throw error;
 return;
 }

 console.log(data);
 });
} catch (error) {
 console.error('Caught the error synchronously');
}

Listing 4-7. Attempting to catch an asynchronously thrown error.

You will notice throughout Node applications that try...catch statements are

used sparingly. They are used with synchronous functions like JSON.parse(), but

not much else. Node supports an asynchronous error-handling mechanism known

as domains,3 but they behave inconsistently and are listed as unstable in the official

documentation. The generally preferred way of handling errors in Node is to pass

them around using callback functions until you reach a place where it makes sense

to handle them.

Callback Hell
One drawback to asynchronous code is that if you don’t structure your code properly,

you can wind up in hell―Callback Hell, to be specific. Callback Hell occurs when

many callback functions are nested within each other. Consider the file reader from

Listing 4-5. In that example, we merely tried to read a file, and if an error occurred

we just printed it to the console and exited. But, what if we wanted to take extra

precaution to ensure that certain error conditions were avoided completely?

3 http://nodejs.org/api/domain.html

47Node’s Programming Model

http://nodejs.org/api/domain.html

With a bit of extra code, we can verify that the file exists and that the filename

corresponds to a file, not a directory or something else. Listing 4-8 shows how this

is accomplished. Unfortunately, by adding calls to fs.exists() and fs.stat(),

the function nesting level in this example has increased by two. Notice how the

code becomes increasingly indented—the beginning of Callback Hell. In a non-

trivial application, the indentation could easily reach a depth of greater than ten

levels, leading to code that’s difficult to read and maintain:

var fs = require('fs');
var fileName = 'README.txt';

fs.exists(fileName, function(exists) {
 if (!exists) {
 return console.error('File does not exist');
 }

 fs.stat(fileName, function(error, stats) {
 if (error) {
 return console.error(error);
 } else if (!stats.isFile()) {
 return console.error('Not a file');
 }

 fs.readFile(fileName, 'utf8', function(error, data) {
 if (error) {
 return console.error(error);
 }

 console.log(data);
 });
 });
});

Listing 4-8. A small asynchronous program suffering from the beginnings of Callback

Hell.

Luckily, Callback Hell can easily be avoided by structuring your code intelligently.

First, notice that the indentation has not been increased when it can be avoided.

Entire function bodies are not included in if statements. Instead, if statements are

used to check for certain conditions, and if they are met the function returns. Second,

we can use named functions instead of anonymous callback functions. Listing 4-9

shows how the previous example can be rewritten using named functions. Notice

Full Stack JavaScript Development with MEAN48

that Callback Hell is instantly vanquished using this approach, albeit at the expense

of slightly more code4:

var fs = require('fs');
var fileName = 'README.txt';

function readCallback(error, data) {
 if (error) {
 return console.error(error);
 }

 console.log(data);
}

function statCallback(error, stats) {
 if (error) {
 return console.error(error);
 } else if (!stats.isFile()) {
 return console.error('Not a file');
 }

 fs.readFile(fileName, 'utf8', readCallback);
};

function existsCallback(exists) {
 if (!exists) {
 return console.error('File does not exist');
 }

 fs.stat(fileName, statCallback);
}

fs.exists(fileName, existsCallback);

Listing 4-9. A rewrite of Listing 4-8 to avoid Callback Hell.

Event Emitters
The second way to implement asynchronous code is via events. If you’ve done any

client-side JavaScript development, you have certainly dealt with events and event-

4 Another common way to avoid Callback Hell is to use a control flow module. The most popular of

these is async. [https://github.com/caolan/async]

49Node’s Programming Model

https://github.com/caolan/async

driven programming. Under this model, objects called event emitters create or

publish events; for example, in the browser, an event could be a mouse click or key

press. Elsewhere in the code, subscribers can listen for these events and react to

them when they occur.

In Node applications, event emitters are created using the EventEmitter data type.

The example in Listing 4-10 shows how events are created using EventEmitters:

var events = require('events');
var EventEmitter = events.EventEmitter;
var emitter = new EventEmitter();

emitter.emit('start');
emitter.emit('count', 1);
emitter.emit('count', 2);

Listing 4-10. Creating several events using an EventEmitter.

The first line of this example imports the core events module, and the second line

assigns the EventEmitter constructor to the variable EventEmitter. On the third

line the constructor is called, and a new EventEmitter is created and stored in the

emitter variable.

The last three lines of Listing 4-10 emit three events using the emit() method. The

first argument to emit() is a string specifying the type of event being emitted. In

this example, one start event and two count events are emitted. Any arguments

following the event type are attached as arguments to the event. The start event

does not have any arguments, but the count events each include a single numeric

argument representing the current count. Please note that this example does not

generate any output. We still need to listen for the events, but we’ll tackle that soon.

Extending EventEmitter
It’s also quite simple to create your own classes that extend the EventEmitter type.

Listing 4-11 shows how this is accomplished. In this example, we’ll create a counter

that emits a new count once per second. Notice that the EventEmitter is called

with the Counter object set as this. Note also that the inheritance relationship is

set up using the util.inherits() method, which is part of the Node core:

Full Stack JavaScript Development with MEAN50

var util = require('util');
var EventEmitter = require('events').EventEmitter;

function Counter() {
 var self = this;

 EventEmitter.call(this); // call EventEmitter constructor
 var count = 0;

 this.start = function() {
 this.emit('start');

 setInterval(function() {
 self.emit('count', count);
 ++count;
 }, 1000);
 };
}

util.inherits(Counter, EventEmitter); // setup inheritance

Listing 4-11. A Counter that inherits from EventEmitter.

The Counter type can then be instantiated using the code shown in Listing 4-12.

In the next section, we’ll learn how to listen for the events emitted from the Counter

or any other event emitter.

var counter = new Counter();

Listing 4-12. Instantiating a Counter event emitter.

Listening for Events
In order for events to be useful, there must be at least one subscriber listening for

them. To set up an event listener in Node, use the on(), addListener(), and once()

methods. The on() and addListener() work in exactly the same manner: they

create listeners for a specific type of event. We prefer on() over addListener() as

it requires less characters. Listing 4-13 shows how on() is used to listen for the

start and count events emitters from our Counter example. This example defines

two listeners: one for start events and another for count events. The type of event

that the listener responds to is denoted by the first argument passed to on(). Each

51Node’s Programming Model

time an event of the correct type is emitted, the callback function passed as the

second argument is invoked. If the emitted event has any arguments associated with

it, they are passed to the callback function:

var counter = new Counter();

counter.on('start', function() {
 console.log('start event');
});

counter.on('count', function(count) {
 console.log('count = ' + count);
});

counter.start();

Listing 4-13. Listening for events emitted by the Counter.

Recall that the counter’s start() causes a start event to be emitted, followed by

one count event per second. It’s worth noting that on() does not work retroactively,

so the listener will only respond to events that are emitted after the listener has

been attached. Hence, if the listeners were attached after calling start(), there’s a

chance that events could be missed.

The once() method is similar to on() with one notable exception. After the once()

callback function is invoked, the listener is removed. This makes once() good for

handling one-time events. For example, our counter emits a single start event

followed by potentially many count events. Therefore, we could use once() to listen

for start events as shown in Listing 4-14. As an exercise, you are encouraged to

experiment with using once() to listen for count events to verify that the listener

is only invoked one time:

counter.once('start', function () {
 console.log('start event');
});

Listing 4-14. Setting up a one-time event listener using once().

Full Stack JavaScript Development with MEAN52

Exception Handling
The simplest way to deal with exceptions using EventEmitters is to emit an error

event; however, you must take care as unhandled error events will cause your

program to terminate. An example that emits an unhandled error is shown in

Listing 4-15. This program crashes when it is run:

var EventEmitter = require('events').EventEmitter;
var emitter = new EventEmitter();

emitter.emit('error', new Error('our error is bad and we feel bad'));

Listing 4-15. An unhandled error event is emitted.

Luckily, error events can be handled like any other events. Listing 4-16 shows how

an error event is handled using on():

var EventEmitter = require('events').EventEmitter;
var emitter = new EventEmitter();

emitter.on('error', function(error) {
 console.error(error.message);
});

emitter.emit('error', new Error('our error is bad and we feel bad'));

Listing 4-16. Handling an error event using on().

The uncaughtException Event
Node provides a global process object that’s used to interact with the currently

running process. When an error event is not caught, it causes an uncaughtException

event to be emitted by the process object. Listing 4-17 shows how this type of event

is handled:

var EventEmitter = require('events').EventEmitter;
var emitter = new EventEmitter();

process.on('uncaughtException', function(error) {
 console.error(error.message);
 process.exit(-1);

53Node’s Programming Model

});

emitter.emit('error', new Error('our error is bad and we feel bad'));

Listing 4-17. Handling an uncaughtException event.

If an uncaughtException event is emitted, it signifies that something has gone ter-

ribly wrong with your application. At this point, your application is considered to

be in an undefined state from which it may or may not be able to recover. In such

a situation your application should not attempt to recover, and just shut down

gracefully. In this example the application is terminated using process.exit().

Promises
Promises are objects that represent a value that is yet to be known when the promise

is created. A promise can be thought of as a contract associated with an asynchronous

function. The asynchronous function returns immediately, but promises that a value

will be available at some point in the future. In the past, promises were part of the

Node core, but they were phased out in favor of callback functions. Many third-

party modules have continued to support promises out of author preference, but

they are now back in the core as of version 0.11.13.5 Promises recently became a

fully supported feature in theV8 engine, meaning that they are available in Node

as well.

Promises Are Only Supported in Node 0.11.13 and Later

If you’re using a version prior to 0.11.13, the promise-related code in this section

will fail to work. Instead, you’ll encounter the error message ReferenceError:

Promise is not defined.

When a promise is created, it’s in a state known as pending or unfulfilled. The

promise remains in this state until its associated asynchronous code has finished

executing. If the asynchronous code completes successfully, the promise moves

into the fulfilled state. But if the asynchronous call fails for some reason, the

promise moves into the rejected state.

5 http://stackoverflow.com/questions/21564993/native-support-for-promises-in-node-js

Full Stack JavaScript Development with MEAN54

http://stackoverflow.com/questions/21564993/native-support-for-promises-in-node-js

In code, a promise is created using the Promise constructor, as shown in Listing 4-

18. Promise() takes one argument, a callback function that takes two arguments of

its own. The callback arguments resolve and reject are functions. To fulfill the

promise, you call the resolve() function. To reject the promise, you call reject().

You can pass whatever arguments you’d like to resolve() and reject(), but con-

vention dictates that only Error objects should be passed to reject():

var promise = new Promise(function(resolve, reject) {
 var success = true;

 if (success) {
 resolve('promise fulfilled');
 } else {
 reject(new Error('promise rejected'));
 }
});

Listing 4-18. Creating a promise.

Listing 4-19 shows how promises are used with asynchronous code by returning to

our file reader example. It looks a lot like the original file reader example; however,

instead of printing messages to the console, we either fulfill or reject the promise

based on the result of readFile():

var fs = require('fs');
var promise = new Promise(function(resolve, reject) {
 fs.readFile('README.txt', 'utf8', function(error, data) {
 if (error) {
 return reject(error);
 }

 resolve(data);
 });
});

Listing 4-19. Using promises with asynchronous code.

The next question is what can be done with the values passed to resolve() or re-

ject()? That is where the promise’s then() method comes into play. then() takes

two arguments, a success callback function and a failure callback function. As you

might expect, the success callback is invoked if the promise is fulfilled, while the

55Node’s Programming Model

failure callback is invoked if the promise is rejected. Listing 4-20 is a continuation

of Listing 4-19 and illustrates how then() is used. This example simply prints the

contents of the file on success or prints the error message on rejection:

promise.then(function(result) {
 console.log(result);
}, function(error) {
 console.error(error.message);
});

Listing 4-20. Example use of a promise’s then() method.

It’s worth pointing out that either of the callback functions passed to then() can

be undefined without issue. For example, the call to then() shown in Listing 4-21

does not include a failure callback. In the event that the promise is rejected, nothing

will happen:

promise.then(function(result) {
 console.log(result);
});

Listing 4-21. An example use of then() without a failure callback.

Promise Chaining
One of the upsides to promises is that they can be chained together. Listing 4-22

shows how chaining is accomplished using multiple calls to then(). In this example,

when the promise is fulfilled the string THE END! is returned. That string is then

available as the result argument in the chained then() call. Assuming the promise

is fulfilled, the contents of the file will be printed followed by the string THE END!:

promise.then(function(result) {
 console.log(result);
 return 'THE END!';
}).then(function(result) {
 console.log(result);
});

Listing 4-22. Chaining promises using then().

Full Stack JavaScript Development with MEAN56

You can also use the catch() method to handle rejections in a promise chain. The

example in Listing 4-23 shows how catch() is used. The code will behave as though

the catch() callback were passed as the second callback to then(), but is more

convenient for chaining. In the event that the promise is rejected, the catch()

callback will display the error message.

promise.then(function(result) {
 console.log(result);
 return 'THE END!';
}).catch(function(error) {
 console.error(error.message);
});

Listing 4-23. Promise chaining using the catch() method.

You can even interleave then() and catch() in a chain. The example in Listing 4-

24 prints the contents of the file or the error message, depending on what happens

with the original promise. The final then() will print THE END! regardless of what

happens:

promise.then(function(result) {
 console.log(result);
}).catch(function(error) {
 console.error(error.message);
}).then(function() {
 console.log('THE END!');
});

Listing 4-24. Promise chaining that interleaves then() and catch().

Summary
This chapter has covered the basics of Node’s programming model. You’ve been

introduced to the event loop, callback functions, event emitters, and promises.

You’ve also learned how to handle exceptions in an asynchronous environment. It

might seem difficult or strange at first, but you’ll find it fairly easy to pick up after

a little practice. In the next chapter, you’ll learn how to apply the techniques learned

in this chapter to the core Node modules.

57Node’s Programming Model

Chapter5
Core Modules
In Chapter 3, you learned about Node’s module system and the require() function.

Then, Chapter 4 taught you how to write code in the Node way. Along the way,

you’ve also seen a few examples that used the http and fs core modules. This

chapter brings all the previously discussed material together, explaining how to

use some of Node’s core modules in detail. Before we start, it’s worth pointing out

that we’ll only scratch the surface of the Node core—it’s far too large to cover in a

single chapter; however, after completing this chapter, you should have adequate

knowledge to understand the Node documentation.1

Command Line Arguments
Reading arguments from the command line is extremely simple in Node. All com-

mand line arguments passed to a Node application are available via the process.argv

array. Note that the first two elements of this array are the node executable, followed

by the name of the invoked JavaScript file. This means that the actual application

arguments begin at process.argv[2]. Listing 5-1 shows how command line argu-

ments are accessed and printed to the console using the forEach() method. To run

1 http://nodejs.org/api/

http://nodejs.org/api/

this example, save the code in a file named argv-demo.js, and run node argv-demo

foo bar baz:

process.argv.forEach(function(value, index, args) {
 console.log('process.argv[' + index + '] = ' + value);
});

Listing 5-1. Accessing command line arguments using process.argv.

Working with the File System
As you’ve already seen in a few examples, the fs module allows you to access the

file system. If you’ve been a client-side JavaScript developer in the past, you know

how frustrating it’s been to have nonexistent or inconsistent APIs for working with

the file system. Node, being a complete server-side implementation, makes this

frustration a thing of the past.

__filename and __dirname
Any file in a Node application can determine its absolute location using the __fi-

lename and __dirname variables. __filename and __dirname are strings, and, as

their names imply, they specify the file being executed and the directory containing

the file. Listing 5-2 shows an example that uses __filename and __dirname. The

output from running this code is shown in Listing 5-3. Your output will differ de-

pending on where you run the code on your machine:

console.log('Currently executing file is ' + __filename);
console.log('It is located in ' + __dirname);

Listing 5-2. Using __filename and __dirname to print file paths.

$ node file-paths.js
Currently executing file is /home/node/file-paths.js
It is located in /home/node

Listing 5-3. Example output from running the code in Listing 5-2.

Full Stack JavaScript Development with MEAN60

It is worth noting that __filename and __dirname are not global variables. Instead,

they are local variables that are defined in every file. Therefore, if your project

consists of multiple files, these values will be different in each file.

The Current Working Directory
Node applications have a concept of a current working directory. This is the directory

that’s used as the baseline when working with relative file paths. At any time during

program execution, you can access the current working directory using the pro-

cess.cwd() method. This method takes no arguments, and returns a string repres-

enting the application’s working directory.

You can also change the current working directory using the process.chdir()

method. This method takes a single argument, a string representing the directory

in which to change. If a problem occurs—for example, if the target directory does

not exist—chdir() throws an exception.

Listing 5-4 shows how the current working directory is inspected and changed. This

example displays the current working directory, and then attempts to move to the

/ directory. If an error occurs, it is logged to stderr. Finally, the new working dir-

ectory is printed to the console:

console.log('Starting in ' + process.cwd());

try {
 process.chdir('/');
} catch (error) {
 console.error('chdir: ' + error.message);
}

console.log('Current working directory is now ' + process.cwd());

Listing 5-4. Displaying and changing the current working directory.

Reading Files
The simplest way to read a file in a Node application is via the fs module’s read-

File() and readFileSync() methods. Both of these methods take a filename to

read as their first argument. An optional second argument can be used to specify

additional options such as the character encoding. If the encoding is not specified,

61Core Modules

the contents of the file are returned in a Buffer (a Node data type used to store raw

binary data).

The synchronous call, readFileSync(), returns the contents of the file or throws

an error if something goes wrong. The asynchronous call, readFile(), takes a call-

back function as its final argument. The callback function takes two arguments, a

possible error object and the file contents. The application in Listing 5-5 using

readFile(), in conjunction with __filename, to read its own source code. The

equivalent synchronous code using readFileSync() is shown in Listing 5-6:

var fs = require('fs');

fs.readFile(__filename, function(error, data) {
 if (error) {
 return console.error(error.message);
 }

 console.log(data);
});

Listing 5-5. An example application that reads its own source code.

var fs = require('fs');
var data;

try {
 data = fs.readFileSync(__filename);
 console.log(data);
} catch (error) {
 console.error(error.message);
}

Listing 5-6. The synchronous equivalent of Listing 5-5.

When you run one of these examples, you’ll notice that it displays a Buffer object

as a series of raw bytes. While this is a true representation of the file contents, it is

not particularly user-friendly. There are two ways to view the data as a string. The

first is to call toString() on the data variable. This will return the Buffer contents

as a UTF-8 encoded string. The second approach is to specify UTF-8 encoding using

the optional second argument, as shown in Listing 5-7. This will cause the data to

be returned as a string instead of a Buffer.

Full Stack JavaScript Development with MEAN62

var fs = require('fs');

fs.readFile(__filename, {
 encoding: 'utf8'
}, function(error, data) {
 if (error) {
 return console.error(error.message);
 }

 console.log(data);
});

Listing 5-7. Setting the encoding type during a file read.

Writing Files
Files can easily be written using the writeFile() and writeFileSync() methods.

These methods are the counterparts of readFile() and readFileSync(). These

methods take a filename as their first argument, and the data to write (as a string or

Buffer) as their second argument. The third argument is optional, and is used to

pass additional information such as the encoding type. Unlike the readFile()

variations, these methods default to using UTF-8 encoding. writeFile() takes a

callback function as its last argument. A potential error object is the only argument

passed to the callback. writeFileSync() does not return a value, but throws an error

if necessary. Listing 5-8 shows how a file is written using writeFile().

var fs = require('fs');
var data = 'some file data';

fs.writeFile(__dirname + '/foo.txt', data, function(error) {
 if (error) {
 return console.error(error.message);
 }
});

Listing 5-8. Writing data to a file using writeFile().

By default, writeFile() will create a new file, or overwrite an existing file with

the same name. This behavior can be modified by passing a flag value using the

optional third argument. For example, passing the flag wx causes an error to be

thrown if the file already exists, while the a flag causes data to be appended to an

63Core Modules

existing file instead of overwriting. A full list of available flags is included in the

fs documentation,2 and an example use of the wx flag is shown in Listing 5-9:

var fs = require('fs');
var data = 'some file data';

fs.writeFile(__dirname + '/foo.txt', data, {
 flag: 'wx'
}, function(error) {
 if (error) {
 return console.error(error.message);
 }
});

Listing 5-9. Setting the flag option when called writeFile().

Streams
A stream is a mechanism for moving data between two points. A stream can be

thought of as a simple garden hose. The hose is connected to a water source. When

the source pushes water into the hose, it flows through to the other end of the hose.

At this point, the water can be used by a sprinkler or some other consumer.

Node utilizes streams in much of its core, such as files and sockets. Streams are at-

tractive because they allow an application to process data in small pieces, instead

of handling all the data at once. Unfortunately, streams are also a common source

of confusion, as Node has implemented several types of stream APIs. This section

will explain streams in their simplest form.

Readable Streams
Readable streams are sources of data. These streams emit data, close, end, and

error events, which are used to process the data stream. When a new piece of data

known as a chunk becomes available, the stream emits a data event with the actual

data passed as a Buffer. The close event is optional, and can be emitted when the

underlying source of the data stream (such as a file), is closed. Once the stream has

sent all of its data, the end event is emitted. After an end event is emitted, no more

2 http://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback

Full Stack JavaScript Development with MEAN64

http://nodejs.org/api/fs.html#fs_fs_open_path_flags_mode_callback

data events should be emitted. If anything goes wrong, the stream emits an error

event.

Readable File Streams
As a good example of working with a readable stream, we turn to the fs.createRead-

Stream() method. This method opens a file as a readable stream. Compare this be-

havior to readFile(), which reads the entire contents of a file and stores it in

memory. If your application needs to process many potentially large files simultan-

eously (for example, a web server), memory usage and garbage collection can become

a problem when using readFile().

createReadStream() returns a readable stream based on the filename passed in as

an argument. Listing 5-10 uses createReadStream() to display the contents of a

file named foo.txt. Notice that the data event handler converts the data chunk to

a string and then displays it using process.stdout.write(). The console.log()

method was not used here because it appends an additional new line to the string

that it displays.3 If console.log() was used to display an input file that required

multiple chunks, it would be displayed with extra line breaks sprinkled throughout.

process.stdout represents the standard output stream of the current process. This

is a writable stream that will be covered shortly:

var fs = require('fs');
var stream = fs.createReadStream('foo.txt');

stream.on('data', function(data) {
 var chunk = data.toString();

 process.stdout.write(chunk);
});

stream.on('end', function() {
 console.log();
});

3 https://github.com/joyent/node/blob/master/lib/console.js#L53

65Core Modules

https://github.com/joyent/node/blob/master/lib/console.js#L53
https://github.com/joyent/node/blob/master/lib/console.js#L53

stream.on('error', function(error) {
 console.error(error.message);
});

Listing 5-10. Displaying the contents of a file using a readable stream.

Writable Streams
Writable streams are destinations—or sinks—for data. Data is sent to a writable

stream by calling its write() method. Once all the desired data has been written,

the stream’s end() method is used to signal the end of the stream. You’ve seen an

example of a writable stream in Listing 5-10 when process.stdout.write() was

invoked. Like readable streams, writable streams also emit close and error events

that behave in the same fashion.

Handling Back Pressure
A writable stream can only handle so much data at one time, as underlying buffers

may become full. Once this limit is reached the stream is saturated, and any addi-

tional data written to the stream can cause problematic or unpredictable behavior.

Back pressure is how the writable stream signals its source to stop sending data.

Back pressure is implemented via the write() method’s Boolean return value. If

this value is false, the source should not write any more data to the stream. This

gives the writable stream time to process the data that has already been written.

Once the stream is ready to receive more data, it emits a drain event. The source

can detect this event and begin sending data again.

Writable File Streams
Writable streams associated with file descriptors are created using the fs.create-

WriteStream() method. Listing 5-11 shows how a writable file stream is created.

In this example, a readable file stream is used to read data from a file. The data from

the readable stream is then sent to the writable stream automatically using the

pipe() method. Essentially, this code performs a file copy:

Full Stack JavaScript Development with MEAN66

var fs = require('fs');
var readStream = fs.createReadStream('foo.txt');
var writeStream = fs.createWriteStream('bar.txt');

readStream.pipe(writeStream);

Listing 5-11. Piping a readable file stream into a writable file stream.

pipe() is a convenient method that allows the output of one stream to be connected

to the input of another stream. This saves the developer the hassle of handling a

variety of stream-related events, such as drain.

The Standard Streams
Node applications are connected to three standard streams by default. These streams

are stdin, stdout, and stderr, and are accessible via the process object. stdin is

a readable stream that’s employed to gather user input. stdout and stderr are

writable streams that are used to display output and errors respectively. The con-

sole.log() and console.error() family of methods are simple wrappers around

calls to process.stdout.write() and process.stderr.write().

When a Node application runs, the stdin stream is in a paused state by default;

however, you can read data from stdin by unpausing the stream and handling data

events. Listing 5-12 shows how data is read from stdin. In this example, stdout is

used to create a prompt for the user’s name. Then, stdin is unpaused using the

readable stream resume() method. When the user types in their name and presses

Return, a data event is emitted. This triggers the handler, which greets the user by

name and then returns stdin to a paused state:

process.stdin.once('data', function(data) {
 process.stdout.write('Hello ' + data.toString());
 process.stdin.pause();
});

process.stdout.write('What is your name? ');
process.stdin.resume();

Listing 5-12. Working with the standard streams.

67Core Modules

Web Programming
Node.js is probably most famous for developing web applications: a web server is

featured on the project’s home page. This section will focus on HTTP servers spe-

cifically. If you’re interested in more generic TCP/IP programming, you'll want to

check out the net core module.4

Creating a Server
Listing 5-13 shows the web server example from the Node.js home page. We’ve ex-

amined this code sample before, but in this chapter we’re going to dive in more

thoroughly. HTTP server functionality is defined in the http and https modules.

In this case we’re creating an insecure HTTP server. Creating an HTTPS server is a

similar process but requires a bit more work, which we’ll revisit later.

As you likely know, HTTP is a request-response protocol. Clients request specific

resources from the server, and the server processes the request and sends back an

appropriate response. The server in Listing 5-13 executes the createServer()

callback each time a request is received from a client. The req argument contains

information about the client and the requested resource. The res argument, on the

other hand, contains information and methods regarding the response.

The writeHead()method is used to write the status code and any optional response

headers. As shown in Listing 5-13 the headers are specified using an object, where

the object keys specify the header names and the object values represent the header

values. Data is written using zero or more res.write() calls. After all the data has

been written, the server completes the connection with a single mandatory call to

res.end(). For added convenience, res.end() supports the same arguments as

res.write(). This means that the entire response can be written via res.end(), as

shown in Listing 5-13. This basic server sends back a single response header, Con-

tent-Type, a 200 response status code, and the body, Hello World\n:

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});

4 http://nodejs.org/api/net.html

Full Stack JavaScript Development with MEAN68

http://nodejs.org/api/net.html

 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Listing 5-13. A very simple HTTP server.

Figure 5.1 shows what a response from this server looks like in Chrome. Chrome’s

developer tools have been used to inspect the HTTP request and response. The

"Hello World" response body clearly shows in the main browser window. Notice

the 200 OK status code and Content-Type response header whose value is set to

text/plain. Note also that a number of other response headers have been included

that we did not specify in our application logic. Node will add a number of response

headers by default if the application does not include them.

Figure 5.1. The response from the server in Chrome's developer tools

The final step to starting the server is calling the listen() method. This causes the

server to begin accepting connections on port 1337. The second argument is optional

and is used to specify the host to which the server will respond. This is useful on

machines that have multiple network interfaces. Once the server is successfully

listening on the port, a listening event is emitted. You can provide an optional

callback to listen() that will handle the listening event.

69Core Modules

Routes
The server in Listing 5-13 is extremely limited because it responds to every request

in the exact same way. A real server would likely need to perform different actions

depending on the request method (also known as a verb) and URL. The combination

of an HTTP verb and requested URL is known as a route. In the previous examples,

the same response was returned for every route. Listing 5-14 shows an updated

server that supports two routes with an additional handler that returns a 404 status

code for unmatched requests. Notice that the requested URL is available via req.url,

while the HTTP verb is found in req.method:

var http = require('http');

http.createServer(function(req, res) {
 if (req.url === '/' && req.method === 'GET') {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end('Hello home page');
 } else if (req.url === '/account' && req.method === 'GET') {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end("Hello account page");
 } else {
 res.writeHead(404, {'Content-Type': 'text/html'});
 res.end();
 }
}).listen(1337);

Listing 5-14. An HTTP server with support for multiple routes.

Accessing Request Headers
Headers are an important part of HTTP transactions. For example, cookies, which

are responsible for maintaining state in web applications, are sent from the client

to the server in the Cookie request header. Similarly, when a server sets a cookie,

it does so via the Set-Cookie response header. You’ve already seen how easy it is

to set response headers. Node makes it just as simple to obtain the values of request

headers—they’re available in req.headers. To make matters even simpler, Node

lowercases the header names, so there’s no need to test for both Host and host. For

example, to read the value of the Cookie request header, you would check

req.headers.cookie. If the header name has a hyphen in the name (User-Agent,

Full Stack JavaScript Development with MEAN70

for example), you would use req.headers['user-agent']. The example in Listing

5-15 reports the value of the User-Agent header:

var http = require('http');
http.createServer(function (req, res) {
 res.end('Your user agent is ' + req.headers['user-agent']);
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

Listing 5-15. An example of accessing HTTP request headers.

Summary
This chapter has introduced the basics of some of Node’s core modules. Specifically,

this chapter has gone on a whirlwind tour of the command line, the file system,

streams, and web servers. Unfortunately, a complete overview of the entire Node

core is beyond the scope of this book, but the reader is encouraged to explore the

complete documentation.5

5 http://nodejs.org/api/

71Core Modules

http://nodejs.org/api/

Chapter6
Building the Node Server
We’ve covered everything you need to dive into creating a real Node server in the

preceding chapters. This chapter will focus on building a subset of the Node server

for the human resources application we’re using to demonstrate the MEAN stack.

Server Plan
Before you start writing any code, you need to have a basic idea of what your web

server should do. For this subset example, our server will need to do two tasks:

view employee information as a list, and for an individual. The server must also be

able to send static resources such as CSS, client-side JavaScript, images, and HTML

files. We should strive to make the various employee resources RESTful rather than

use SOAP/WSDL1. As we delve further into the development of our Human Re-

sources application, you’ll find that hooking in different front-end frameworks such

as Angular is much easier with a RESTful API that's simple to consume. The

RESTful design pattern also lines up cleanly with the employee operations we require

for our application, namely create, retrieve, update, and delete (CRUD). We should

1 http://en.wikipedia.org/wiki/Web_Services_Description_Language

http://en.wikipedia.org/wiki/Web_Services_Description_Language

have the static resources segmented out into their own folder and break the code

up into logical and reusable pieces.

Structuring the Application
Below is the file structure of the application. The files and folders listed here will

be referenced frequently, so keep Listing 6-1 handy:

|____database
| |____employees.json
|____index.js
|____lib
|____node_modules
| |____colors
|____package.json
|____public
| |____home.html
| |____style.css

Listing 6-1. Final directory structure for Node example application.

In general, the lib folder is where local, project-specific modules are located. Inside

the public folder, we’ll store our static resources. To keep it simple for this example,

we’ll use employees.json as a database that we can query. You can see the node_module

is present, and we already have the colors module installed.

Getting Started
Do you remember the npm command used to start a new Node project? Create a

new directory and open the terminal window in that directory. Within that folder,

initialize a new node application using the correct npm command. After that, install

colors and make sure the package.json file is created and updated. Next, create the

index.js file in the root of the directory.

Finally, we’ll write the stub server that you’ve seen several times throughout this

book:

var http = require('http');

http.createServer(function (req, res) {

Full Stack JavaScript Development with MEAN74

 // A parsed url to work with in case there are parameters
 var _url;

 // In case the client uses lower case for methods.
 req.method = req.method.toUpperCase();
 console.log(req.method + ' ' + req.url);
 res.end('The current time is ' + Date.now())

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

Listing 6-2. Server skeleton

Listing 6-2 creates a server and begins listening on port 1337. If you make requests

to localhost:1337/, you should see information being logged into the console, in-

dicating that the server is listening. You should notice that the server never responds

in this state. Can you spot why? It's because we have yet to do anything with the

res object; specifically, res.end() is never called. res.end() is what ends and

sends a response to the incoming request. We will fill in the correct responses as

the server becomes more fleshed out.

About req and res

The req and res objects often seen in Node servers are short for “request” and

“response.” The req object in this example is an http.ClientRequest object.

You can find more information about this object in the Node.js documentation.2

The related res object is an http.ServerResponse object, for which the docu-

mentation for this object is also found in the Node.js documentation3. Going into

the details of these objects is outside the scope of this book. For now, try to remem-

ber that “req/request” is the incoming request and “res/response” is the response

the server builds and eventually sends. If you have questions about methods,

properties, or events on these objects, we encourage you to consult the Node.js

documentation links specified.

2 http://nodejs.org/api/http.html#http_class_http_clientrequest
3 http://nodejs.org/api/http.html#http_class_http_serverresponse

75Building the Node Server

http://nodejs.org/api/http.html#http_class_http_clientrequest
http://nodejs.org/api/http.html#http_class_http_serverresponse

Routing
The most fundamental feature of any web server is the ability to route requests.

Looking back at our plan for the server, there are mainly three routes we are con-

cerned with:

1. one for retrieving a list of employees

2. one for retrieving a specific employee

3. a general catchall route for static files

In addition, we only support GET requests for this example server, so we should

respond properly if the client tries to make a non-GET request:

http.createServer(function (req, res) {
 // A parsed url to work with in case there are parameters
 var _url;

 // In case the client uses lower case for methods.
 req.method = req.method.toUpperCase();
 console.log(req.method + ' ' + req.url);

 if (req.method !== 'GET') {
 res.writeHead(501, {
 'Content-Type': 'text/plain'
 });
 return res.end(req.method + ' is not implemented by this
➥server.');
 }

 if (_url = /^\/employees$/i.exec(req.url)) {
 // return a list of employees
 res.writeHead(200);
 return res.end('employee list');
 } else if (_url = /^\/employees\/(\d+)$/i.exec(req.url)) {
 // find the employee by the id in the route
 res.writeHead(200);
 return res.end('a single employee');
 } else {
 // try to send the static file
 res.writeHead(200);
 res.end('static file maybe');
 }
}).listen(1337, '127.0.0.1');

Full Stack JavaScript Development with MEAN76

Listing 6-3. Node server with primitive routing

First, we sure that the method is a GET request. If it isn’t, the correct status code to

respond with is 501. We use res.writeHead and pass two arguments. The first ar-

gument is the status code that will be returned to the client. The second is the re-

sponse headers. In this example, we’re only supplying "Content-Type" to be plain

text.

If the incoming method is a GET request, we want to try to route the request. First,

we want to see if the request is for "/employees". The regular expression runs

against req.url and looks for a match. If there is one, _url will have a value, execute

the first if block, and respond with "employee list". If req.url doesn’t match

the first regular expression, we try a second regular expression checking for "/em-

ployees/a_number". In that case, the server will respond with "a single employee".

Finally, if the requested URL fails to match either of those regular expressions, we’ll

assume it’s a static file. The code will check the file system to locate the file and

then send it. If the file does not exist, the correct status code to send is a 404.

For both of the employee routes, we have to query a database. Rather than pollute

index.js with database querying logic, we’re going to write a simple database module.

Remember, for this example the database will be a JSON file.

Database Module
The database module should encapsulate the logic required to retrieve a list of em-

ployees and for looking up a single employee based on their ID. You may recall in

previous chapters, we noted that database queries are I/O and should be non-

blocking. The JavaScript pattern for non-blocking I/O is to supply a callback

function that is executed when the I/O is complete.

Create an employees.js file in the lib folder and an employees.json file in the database

folder:

var employeeDb = require('../database/employees');

exports.getEmployees = getEmployees;
exports.getEmployee = getEmployee;

function getEmployees (callback) {

77Building the Node Server

 setTimeout(function () {
 callback(null, employeeDb);
 }, 500);
}

function getEmployee (employeeId, callback) {
 getEmployees(function (error, data) {
 if (error) {
 return callback(error);
 }

 var result = data.find(function(item) {
 return item.id === employeeId;
 });

 callback(null, result);
 });
}

Listing 6-4. Simple database module

This pattern should look familiar from the chapter about modules. We export two

functions, one to obtain a list of employees (getEmployees) and one to fetch a single

employee (getEmployee). Both of these functions take callback as a parameter.

That function that will be executed when the I/O is complete.

If you remember back to when we discussedthe require keyword, you'll recall

thatit accepts many different files and paths. One option is to pass a path to a JSON

file. In Listing 6-1 under the database folder, we have an employees.json file stored.

Copy Listing 6-5 into database/employees.json.

[
 {
 "id": "1000003",
 "name": {
 "first": "Colin",
 "last": "Ihrig"
 },
 "address": {
 "lines": ["11 Wall Street"],
 "city": "New York",
 "state": "NY",

Full Stack JavaScript Development with MEAN78

 "zip": 10118
 }
 },
 {
 "id": "1000021",
 "name": {
 "first": "Adam",
 "last": "Bretz"
 },
 "address": {
 "lines": ["2 Market Square","(Market Square)"],
 "city": "Pittsburgh",
 "state": "PA",
 "zip": 15222
 }
 }
]

Listing 6-5. Example employees.json file

var employeeDb = require('../database/employees'); will load the JSON file

into memory as a regular JavaScript collection that can be referenced from the

functions in this file. Again, to simulate a query to a real database, we’ve inserted

some delay with setTimeout in the getEmployees function.

The getEmployee function takes two parameters: a callback function and an employee

ID. First, we call the getEmployees function and pass an anonymous function as

the callback parameter. After 3,000 milliseconds, the callback function will be

executed by the getEmployees functionand pass the caller error and data arguments.

If there’s an error, we want to execute the callback function and bubble this error

up to the calling function. This is an extremely common pattern, so it’s worth

memorizing. If there is no error, we want to iterate over data and try to locate an

employee with an ID equal to employeeId. Finally, execute callback and pass back

any errors and the employee object from the “database.”

In Node, the common callback convention is that the first argument to a callback

function should be the error object, or null if there were no errors. Similarly if a

function requires a callback function, just as with both of our employee functions,

the last argument in the arguments list should be the callback function. You’ll find

this to be common practice throughout the Node community.

79Building the Node Server

The find Method

A quick note about the find method. It is in the spec for ECMAScript 6 but is

currently unavailable in the Node runtime as of Node version 0.10.32. For this

example, you can add a polyfill for the Array.find method. A polyfill is a term

used to describe code that enables future JavaScript features in environments that

are yet to support it. You can also write an additional method in lib/employees

that locates an element in an array based on an ID. This bit of code will be removed

once a true database is introduced, so don’t feel obligated to spend much time on

it.

Querying the Database
The logic to query the ad hoc database is now encapsulated in lib/employees.js. Let’s

update the index.js file to load the new module into memory and use the exported

methods:

var http = require('http');
var employeeService = require('./lib/employees');

http.createServer(function (req, res) {
 // A parsed url to work with in case there are parameters
 var _url;
 (...)

 if (_url = /^\/employees$/i.exec(req.url)) {
 // return a list of employees
 employeeService.getEmployees(function (error, data) {
 if (error) {
 // send a 500 error
 }
 // send the data with a 200 status code
 });
 } else if (_url = /^\/employees\/(\d+)$/i.exec(req.url)) {
 // find the employee by the id in the route
 employeeService.getEmployee(_url[1], function (error, data) {
 if (error) {
 // send a 500 error
 }

 if (!data) {
 // send a 404 error

Full Stack JavaScript Development with MEAN80

 }

 // send the data with a 200 status code
 });
 } else {
 // try to send the static file if it exists,
 // if not, send a 404
 }
}).listen(1337, '127.0.0.1');

Listing 6-6. Incorporating the employee database module

In Listing 6-6, the employee database module is loaded with var employeeService

= require('./lib/employees');. employeeService is an object that has the

methods defined in lib/employees.js. The getEmployees function is called if the in-

coming URL is "/employees", and getEmployee is called if the incoming URL is

"/employees/a_number" with "a_number" being passed to getEmployee as the em-

ployeeId.

Remember back to the function definitions of the employeeService module; both

require callback functions that will be executed when the I/O is completed. We

supply anonymous functions as input parameters to both function calls. When the

database query is completed, execution will continue inside the callback functions.

You’ll notice that the response logic has been replaced with comments about what

should happen when various conditions are met. Looking at the comments, it should

be clear that there’s an opportunity to write another module that handles sending

responses to the client.

Response Generator
We are going to create another module that handles sending responses to the client.

Create a file calledlib/responseGenerator.js to encapsulate the response logic.

Looking at the comments about responses, we can see that four different responses;

a 200 with JSON, a 404, a 500, and a file response. This module should expose four

distinct methods to respond accordingly:

81Building the Node Server

var fs = require('fs');

exports.send404 = function (response) {
 console.error("Resource not found");

 response.writeHead(404, {
 'Content-Type': 'text/plain'
 });
 response.end('Not Found');
}

exports.sendJson = function (data, response) {
 response.writeHead(200, {
 'Content-Type': 'application/json'
 });

 response.end(JSON.stringify(data));
}

exports.send500 = function (data, response) {
 console.error(data.red);

 response.writeHead(500, {
 'Content-Type': 'text/plain'
 });
 response.end(data);
}

exports.staticFile = function (staticPath) {
 return function(data, response) {
 var readStream;

 // Fix so routes to /home and /home.html both work.
 data = data.replace(/^(\/home)(.html)?$/i,'$1.html');
 data = '.' + staticPath + data;

 fs.stat(data, function (error, stats) {

 if (error || stats.isDirectory()) {
 return exports.send404(response);
 }

 readStream = fs.createReadStream(data);
 return readStream.pipe(response);

Full Stack JavaScript Development with MEAN82

 });
 }
}

Listing 6-7. The response generator

send404, sendJson, and send500 essentially do the same task. Data (if there is re-

sponse data) and a response object are passed in, the proper Content-Type header

is set based on what the response payload will be, and end is called to write the

payload and finish the response. The response parameter will be the res argument

in index.js, which, if you remember, is an http.ServerResponse object.

staticFile accepts a single argument, staticPath. That argument can be thought

of as a mount point, a file under which all the static content resides on the file

system. A function is returned that accepts a data and a response object, just like

the other function in this file. staticFile retrieves information about the file located

at path. If the file doesn’t exist or is a directory, we reuse the send404 function.

Otherwise, we create a read stream based on the filepath and pipe that into the re-

sponse. The response object (an http.ServerResponse object) implements the

Writable stream interface.4 This allows streams to be piped directly into the response

without additional development. The stream-and-pipe approach is ideal in this

circumstance because there is no processing on the files before they’re transmitted,

so there’s no need to buffer the full file before sending it back to the client. This

drastically reduces the amount of memory required to serve static files.

Putting It Back Together
The response generator module encapsulated the logic required to send responses

for this example server. Let’s update the index.js file to use the new module:

var http = require('http');
var employeeService = require('./lib/employees');
var responder = require('./lib/responseGenerator');
var staticFile = responder.staticFile('/public');

http.createServer(function (req, res) {

4 http://nodejs.org/api/stream.html#stream_class_stream_writable

83Building the Node Server

http://nodejs.org/api/stream.html#stream_class_stream_writable

 // A parsed url to work with in case there are parameters
 var _url;

 // In case the client uses lower case for methods.
 req.method = req.method.toUpperCase();
 console.log(req.method + ' ' + req.url);

 if (req.method !== 'GET') {
 res.writeHead(501, {
 'Content-Type': 'text/plain'
 });
 return res.end(req.method + ' is not implemented by this
➥server.');
 }

 if (_url = /^\/employees$/i.exec(req.url)) {
 employeeService.getEmployees(function (error, data) {
 if (error) {
 return responder.send500(error, res);
 }
 return responder.sendJson(data, res);
 });
 } else if (_url = /^\/employees\/(\d+)$/i.exec(req.url)) {then
➥added
 employeeService.getEmployee(_url[1], function (error, data) {
 if (error) {
 return responder.send500(error, res);
 }

 if (!data) {
 return responder.send404(res);
 }

 return responder.sendJson(data,res);
 });
 }
 else {
 // try to send the static file
 res.writeHead(200);
 res.end('static file maybe');
 }
}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

Full Stack JavaScript Development with MEAN84

Listing 6-8. Final example server

Listing 6-8 is the final index.js file to make our server completely functional. The

new response generator module has been loaded into the code as responder, and

we use this module throughout the route logic to send the proper responses.

As a last exercise, put some static HTML and CSS in the two files under public. Be

sure to load the style.css file in the home.html file. We’ll leave it up to you to decide

what HTML and CSS you want to write.

Pointing your browser to "localhost:1337/home" should display the contents of

home.html and download the style.css file from the public directory. Pointing a browser

to http://localhost:1337/employees/1000003 will net a server response with

employee data from employees.json.

The server will respond to the routes described in the routing section and send back

valid JSON responses. It will also respond to requests for static files that are stored

under the public directory. We encourage you to experiment with these files to better

understand how everything fits together.

Up to this point, we have been discussing these pieces (modules, I/O, events, streams,

and so on) in isolation. I trust that this exercise gave you a better understanding of

how all the pieces connect and how to stand up a rudimentary Node web server.

In the Express chapters, we’ll revisit these files and learn how leveraging a framework

can drastically reduce the amount of boilerplate code required to set up a simple

server.

Summary
This chapter focused on building a subset of the Node server for the human resources

application that we'll be using to demonstrate the MEAN stack throughout this book.

We started by building a skeleton structure for our app, then added basic function-

ality to cover routing, querying a database and sending a response. We'll be refact-

oring this functionality in later chapters.

In the next chapter, we;re going to introduce MongoDB.

85Building the Node Server

Chapter7
MongoDB Introduction
Almost all web applications depend on some sort of database for persisting inform-

ation. Databases are primarily either relational or NoSQL. Relational databases, the

de facto standard for years, are identified by their use of SQL. The NoSQL family

of databases, as their name suggests, do not use SQL, and have risen to prominence

in recent years, mainly due to the perceived ease of use and speed. The MongoDB

documentation provides a very good comparison of (Mongo-specific) NoSQL com-

mands to SQL.1 The next three chapters will discuss MongoDB, one of the most

popular NoSQL databases, while relational databases will be explored in Chapter

10.

NoSQL Databases
The name NoSQL is a bit generic, referring to a number of data store types. Essen-

tially, NoSQL represents any data store that does not use SQL. Some example types

of NoSQL databases are document stores, object stores, and key/value stores. Ex-

1 http://docs.mongodb.org/manual/reference/sql-comparison/

http://docs.mongodb.org/manual/reference/sql-comparison/
http://docs.mongodb.org/manual/reference/sql-comparison/

amples of NoSQL implementations are Redis2, Memcached3, Cassandra4, and, of

course, MongoDB. None of these follow the table-based setup of relational databases.

NoSQL databases are generally faster than relational databases because they don’t

typically follow a predefined schema or enforce data consistency as strictly as their

relational cousins. This means that NoSQL data stores are usually suited to proto-

typing, and to social media applications that don’t require the data to be perfectly

consistent at all times. For example, if you miss an entry on your Facebook newsfeed,

it’s likely to be no big deal. On the other hand, you’d probably want your bank ac-

count to accurately reflect the amount of money you deposit into it, and for this

reason a relational database is preferable.

History of MongoDB
Development began on MongoDB in 2007 at a company named 10gen. Mongo was

originally designed as a component in a planned PaaS (Platform as a Service) offering.

Then in 2009, MongoDB was open-sourced. Mongo became so successful that 10gen

changed its name to MongoDB Inc. to more closely associate the company name

with its flagship product. Since its release, Mongo has been used at many high-

profile companies including Craigslist, Foursquare, eBay, and The New York Times.

According to db-engines.com,5 MongoDB is the most popular NoSQL database at

the time of writing, and the fifth most popular database overall.

MongoDB falls into the document store class of NoSQL databases. Mongo stores

data in binary JSON (BSON) formatted documents.6 Mongo’s native use of JSON

provides a simple and convenient interface for JavaScript applications. Mongo in-

stallations also come with several tools such as an interactive shell, data import

and export utilities, and statistics-reporting applications.

Installing MongoDB Locally
MongoDB runs on many platforms, including Windows, OS X, and the most popular

flavors of Unix. Current and previous releases for all platforms can be downloaded

2 http://redis.io/
3 http://memcached.org/
4 http://cassandra.apache.org/
5 http://db-engines.com/en/ranking
6 http://www.mongodb.com/json-and-bson

Full Stack JavaScript Development with MEAN88

http://redis.io/
http://memcached.org/
http://cassandra.apache.org/
http://db-engines.com/en/ranking
http://www.mongodb.com/json-and-bson

from Mongo's downloads page.7 The binary distributions found on this page are the

official versions; however, Mongo can also be installed via package managers8 such

as Homebrew. Regardless of how you choose to install MongoDB, you should refer-

ence the installation guide for your particular platform.9

Once installation is complete, verify that everything is installed by running the

command shown in Listing 7-1. mongod is the primary daemon process used by

MongoDB, and this command returns the version currently installed. If it is installed

properly, you should see output similar to what is shown in Listing 7-2. In this

particular case, Mongo 2.6.3 is installed.

mongod -version

Listing 7-1. Verifying that MongoDB is installed

db version v2.6.3
2014-07-27T13:57:07.359-0400 git version: nogitversion

Listing 7-2. Example version output from Listing 7-1

Cloud Hosting
A number of companies will host MongoDB instances in the cloud for you. This

saves you the hassle of setting up and maintaining Mongo yourself. Many of these

companies will even host your database for free if it’s under a certain size, making

it an ideal solution for prototypes. As with all cloud services, you’ll pay an increasing

amount of money as your resource requirements increase. By hosting your data in

the cloud, it is easily accessible from anywhere in the world.

A list of MongoDB-approved cloud partners is available on mongodb.com.10 The

examples throughout the remainder of this book use MongoLab11 as the cloud-

hosting provider for MongoDB. MongoLab provides a free sandbox environment

with 0.5GB of storage, which is more than enough for the examples in this book.

7 http://www.mongodb.org/downloads
8 http://www.mongodb.org/downloads#packages
9 http://docs.mongodb.org/manual/installation/
10 https://www.mongodb.com/partners/cloud
11 https://mongolab.com/

89MongoDB Introduction

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads#packages
http://docs.mongodb.org/manual/installation/
https://www.mongodb.com/partners/cloud
https://mongolab.com/

Heroku Integration
MongoLab integrates quite easily with Heroku12 applications, which is what we’ll

use for cloud hosting of Node.js applications in the book examples. If you plan to

follow along with the sections related to Heroku, make sure that you sign up for a

free account13 and install the Heroku toolbelt,14 a set of command line tools for

working with Heroku.

To add MongoLab to a Heroku application, run the following command. This will

create everything you need to access a MongoLab-hosted database:

heroku addons:add mongolab

Listing 7-3. Command to add MongoLab to a Heroku application

At this point, MongoLab should be listed as an add-on in your Heroku project, as

shown in Figure 7.1. By clicking on the MongoLab text, you will be taken to a page

resembling Figure 7.2. This page contains information about your application’s

database, including its name, your username, a command for connecting using the

Mongo shell, and a URI for connecting using a driver. In this example, the database

name and username are both heroku_app21015781. In the next chapter, you’ll learn

how to access your database from a Node application using the provided URI.

12 http://www.heroku.com
13 https://signup.heroku.com/dc
14 https://toolbelt.heroku.com/

Full Stack JavaScript Development with MEAN90

http://www.heroku.com
https://signup.heroku.com/dc
https://signup.heroku.com/dc
https://toolbelt.heroku.com/

Figure 7.1. MongoLab integration with a Heroku application

Figure 7.2. MongoLab page showing database information

The MongoDB Shell
The Mongo shell program, mongo, is one of the command line utilities installed with

MongoDB by default. If you’re using MongoLab, you can utilize the mongo command

shown in Figure 7.2 to connect to your database. If you are running Mongo locally,

you’ll have to first start the Mongo daemon, mongod, as it accepts the incoming

connections from mongo. By default, mongo attempts to connect to port 27017 on

localhost, but this can be configured using the --port and --host flags. Assuming

91MongoDB Introduction

that you are running locally, the mongo command’s output is shown in Listing 7-4.

Notice the > character on the last line of output. This is the mongo command prompt.

Permission Granted

You must have the proper permissions to access Mongo’s /data/db directory. If

you run into permission errors, you might want to check out this relevant Stack

Overflow question.15

$ mongo
MongoDB shell version: 2.6.3
connecting to: test
>

Listing 7-4. Connecting to MongoDB using mongo

Once mongo is connected, you can see the name of the current database using the

db command, as shown in Listing 7-5. In this case, we are connected to the default

test database:

> db
test

Listing 7-5. The db command displays the name of the current database

To change to a different database, issue the use command followed by the name of

the database to switch to. For example, to switch to the presidents database, issue

the command shown in Listing 7-6. This command will work even if the presidents

database is yet to be created. You can verify that the change worked properly using

the db command. It is worth noting that Mongo will only create the database once

data is added:

> use presidents
switched to db presidents

Listing 7-6. The use command switches between databases

15 http://stackoverflow.com/questions/7948789/mongodb-mongod-complains-that-there-is-no-data-

db-folder

Full Stack JavaScript Development with MEAN92

http://stackoverflow.com/questions/7948789/mongodb-mongod-complains-that-there-is-no-data-db-folder
http://stackoverflow.com/questions/7948789/mongodb-mongod-complains-that-there-is-no-data-db-folder

To view all the available databases, use the show dbs command as shown in Listing

7-7. If you’ve been trying these examples in order, you’ll notice that the presidents

database is absent, as no data was added.

> show dbs
admin (empty)
local 0.078GB

Listing 7-7. List all available databases using the dbs command

Inserting New Data
db is not just a command for showing the name of the current database. It is also

the root object of the database, which you can use to manipulate data. For example,

supposing we want to add Bill Clinton to our database of presidents. First, issue

the use presidents command to switch to the presidents database. Next, issue

the command shown in Listing 7-8 to insert Bill Clinton. This command adds the

object {name: 'Bill Clinton'} to the people collection of the presidents database.

Since the presidents database doesn’t technically exist yet, Mongo creates it now.

Mongo is also kind enough to create the people collection for us. Notice that the

WriteResult returned by this operation verifies that one object has been created in

the database via the nInserted field. You can also verify that the president database

and people collection now exist using the show dbs and show collections com-

mands respectively.

> db.people.insert({name: 'Bill Clinton'})
WriteResult({ "nInserted" : 1 })

Listing 7-8. Adding data to a MongoDB database

Multiple items can be added in one insert() call by passing in an array of objects.

An example of this is shown in Listing 7-9. Notice that the resulting BulkWri-

teResult specifies that two objects have been inserted:

> db.people.insert([{name: 'George H Bush'},
 {name: 'George W Bush'}])
BulkWriteResult({
 "writeErrors" : [],
 "writeConcernErrors" : [],

93MongoDB Introduction

 "nInserted" : 2,
 "nUpserted" : 0,
 "nMatched" : 0,
 "nModified" : 0,
 "nRemoved" : 0,
 "upserted" : []
})

Listing 7-9. Adding multiple pieces of data with one call to insert()

Retrieving Data
Now that data has been added to our database, we need some way of reading it back.

This is accomplished using the collection’s find() method. Returning to our pres-

idents example, Listing 7-10 shows how all the presidents can be retrieved at once.

Within these results it’s worth pointing out the _id field. MongoDB assigns this

field to every object it stores. It’s a unique identifier for the object in question:

> db.people.find()
{ "_id" : ObjectId("53d58ad9ec6dce1f6c577082"), "name" : "Bill
➥Clinton" }
{ "_id" : ObjectId("53d58ee05a0f7ff4e38b8ba3"), "name" : "George H
➥Bush" }
{ "_id" : ObjectId("53d58ee05a0f7ff4e38b8ba4"), "name" : "George W
➥Bush" }

Listing 7-10. Retrieving all items in a collection using find()

These results are nice but in most cases you’ll want to apply some search criteria,

instead of returning every item in the collection. find() supports this functionality

by allowing a criteria object to be passed as an argument. Listing 7-11 shows how

a search can be performed for all presidents named Bill. In this example, the search

criteria specifies that the name field must match the regular expression /^Bill/ (a

string beginning with Bill). A full list of the query operators is available in the Mongo

query documentation.16 Note that if you wanted a more exact query for Bill Clinton,

you could use db.people.find({name: 'Bill Clinton'}).

16 http://docs.mongodb.org/manual/reference/operator/query/

Full Stack JavaScript Development with MEAN94

http://docs.mongodb.org/manual/reference/operator/query/
http://docs.mongodb.org/manual/reference/operator/query/

> db.people.find({name: {$regex: '^Bill'}})
{ "_id" : ObjectId("53d58ad9ec6dce1f6c577082"), "name" : "Bill
➥Clinton" }

Listing 7-11. Applying search criteria to find()

Limiting the Size of the Result Set
There are two main ways to limit the size of the result set returned by find(). The

first way is to use findOne() instead of find(). findOne() is used in the same

fashion, but returns just a single match. Listing 7-12 shows how findOne() is used

to select one of the presidents named George Bush:

> db.people.findOne({name: {$regex: '^George'}})
{ "_id" : ObjectId("53d58ee05a0f7ff4e38b8ba3"), "name" : "George H
➥Bush" }

Listing 7-12. Performing a search using findOne()

The second approach is to chain the limit()method to the find()method. limit()

takes a number representing the maximum result set size as an input argument.

Listing 7-13 shows how limit() is used to restrict the result set size to two:

> db.people.find().limit(2);
{ "_id" : ObjectId("53d5a5965a0f7ff4e38b8ba5"), "name" : "Bill
➥Clinton" }
{ "_id" : ObjectId("53d5a59d5a0f7ff4e38b8ba6"), "name" : "George H
➥Bush" }

Listing 7-13. Restricting the result set size using limit()

Updating Data
Data is updated using the collection’s aptly named update() method. update()

takes a query object as its first argument. This object specifies which items should

be updated, and uses the same syntax as find(). The second argument to update()

is another object that specifies how the values should be updated. update() supports

a third, optional object argument. This object supports these properties:

■ upsert: a Boolean value that defaults to false. If this is true, update() will

create a new document if no existing items match the query criteria.

95MongoDB Introduction

■ multi: a Boolean value that defaults to false. If this is set to true, update()

will modify all documents that match the query criteria.

■ writeConcern: a document that defines the write behavior of the update. For

more information on this parameter, see the write concern documentation.17

A simple example of update() is shown in Listing 7-14. In this example, Bill Clinton

is renamed William Clinton. This update also adds a new terms field to the docu-

ment to specify the number of presidential terms served. It’s an example of NoSQL’s

flexibility compared to relational databases. At runtime, NoSQL databases can define

new fields on an individual piece of data. In a relational database this would violate

the schema of the table. Notice that the results indicate that one document was

matched and updated, while no documents were upserted:

> db.people.update({name: 'Bill Clinton'}, {$set: {name: 'William
➥Clinton', terms: 2}})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Listing 7-14. Modifying existing data using update()

Deleting Data
The final CRUD operation is delete. Data is deleted from a collection using the re-

move() method. remove() takes a find() style query object as it’s first argument.

A second, optional object argument supports two fields: justOne and writeConcern.

If justOne is set to true, the removal will be limited to a single document. This

defaults to false, meaning that all matches are removed. The writeConcern para-

meter is a document that behaves in the same fashion as update()’s writeConcern.

The example in Listing 7-15 shows how one of the presidents with the last name

Bush can be removed from the collection. Notice that the results specify only one

item was removed, despite two presidents matching the search criteria:

> db.people.remove({name: {$regex: 'Bush$'}}, {justOne: true})
WriteResult({ "nRemoved" : 1 })

Listing 7-15. Deleting data using remove()

17 http://docs.mongodb.org/manual/core/write-concern/

Full Stack JavaScript Development with MEAN96

http://docs.mongodb.org/manual/core/write-concern/

If you’ve been following along with all the examples, your database should now

look like Listing 7-16 after issuing a find(). Notice that Bill Clinton has been re-

named and the terms property has been added, while George H Bush has been de-

leted:

> db.people.find()
{ "_id" : ObjectId("53d58ee05a0f7ff4e38b8ba4"), "name" : "George W
➥Bush" }
{ "_id" : ObjectId("53d58ad9ec6dce1f6c577082"), "name" : "William
➥Clinton", "terms" : 2 }

Listing 7-16. State of the people collection after manipulating data

Deleting Collections
Entire collections can be removed from the database using the collection’s drop()

method. Listing 7-17 shows how the people collection is dropped:

> db.people.drop()
true

Listing 7-17. Deleting the people collection using drop()

In Listing 7-18, the show collections command verifies that the collection no longer

exists:

> show collections;
system.indexes

Listing 7-18. Displaying the available collections after calling drop()

Deleting Databases
It is possible to delete entire databases and all underlying data using the dropData-

base() method. Listing 7-19 shows how this is done:.

> db.dropDatabase()
{ "dropped" : "presidents", "ok" : 1 }

Listing 7-19. Deleting a database using dropDatabase()

97MongoDB Introduction

This should be used with caution. You should double check that you’re using the

correct database before issuing dropDatabase().

Summary
This chapter has introduced the basic concepts of MongoDB. You’ve learned how

to get up and running with MongoDB, both locally and using a cloud hosting pro-

vider. You have also learned about the basic operations supported by the mongo

shell. For a more comprehensive dive into Mongo’s shell, we’d encourage you to

browse the documentation.18

In the next chapter, you’ll learn how to work with MongoDB from within Node.js

applications. There are two modules primarily used for this task. The first is the

MongoDB native driver.19 The second is a module named Mongoose, which operates

at a slightly higher level of abstraction than the native driver.

18 http://docs.mongodb.org/manual/
19 http://mongodb.github.io/node-mongodb-native/

Full Stack JavaScript Development with MEAN98

http://docs.mongodb.org/manual/
http://mongodb.github.io/node-mongodb-native/

Chapter8
Interacting with MongoDB Using

Mongoose
The previous chapter covered the basics of MongoDB: what it is, how to set it up,

and how it can be useful. We’ll assume that by this point you have a MongoDB in-

stance up and running somewhere. We’re going to use the instance we’ve created,

but you should create your own so that you have the freedom to experiment on your

own. If you’re yet to do so, you can create a free MongoDB instance at MongoLab.1

In this chapter, we’re going to cover the nuts and bolts of working with MongoDB.

If you remember previous chapters, we used the term CRUD (create, retrieve, update,

and delete). CRUD operations cover the majority of data interactions in most com-

puter systems. When you understand the basic CRUD features of MongoDB, you’ll

be surprised at how much you can accomplish with very little code.

For this chapter, we’re going to keep all of our code in a single file for clarity. We’ll

just keep appending and editing the same file, and end up with a database priming

script for future use in this book.

1 https://mongolab.com/welcome/

https://mongolab.com/welcome/

Mongoose Node Module
During our conversation about modules, we said that most common problems already

have a module that’s been created to solve the problem; interacting with a MongoDB

instance is no exception. The standard Node module used for database operations

is Mongoose.2 It is very unlikely that you’ll work on a Node server that communicates

with a MongoDB and not use Mongoose. While Mongoose is the de facto module

for interfacing with a MongoDB instance, there are other options. A native driver3

is available for Node that is a port of the Ruby version. It is much more low-level

than Mongoose and as a result, can be much more performant in certain situations.

For ease of use and community adoption, all of our examples will use the Mongoose

module.

Mongoose exposes all the MongoDB features in an intuitive and JavaScript-friendly

interface. There are calls for all the querying features MongoDB supports, as well

as defining schemas and instantiating models from the database.

An important point to remember throughout this chapter is that MongoDB is the

actual database that stores and retrieves data. Mongoose is the Node module that

encapsulates the interactions with a MongoDB instance.

Schemas
Using Mongoose, everything starts with a schema. A schema maps to a MongoDB

document or collection and is a set of rules and instructions for creating models.

You can think of a Mongoose schema as a table definition if you have experience

with traditional relationship-based databases such as MySQL.

At its core, a schema is like any other JavaScript object—a key-value pair. The key

is the property name and the value is a Mongoose SchemaType. When a document

is retrieved from the database, Mongoose attempts to convert the value to the related

SchemaType and then return a model object. The available SchemaTypes are:

■ String

■ Number

2 http://mongoosejs.com/
3 https://github.com/mongodb/node-mongodb-native

Full Stack JavaScript Development with MEAN100

http://mongoosejs.com/
https://github.com/mongodb/node-mongodb-native

■ Date

■ Buffer

■ Boolean

■ Mixed

■ ObjectId

■ Array

It is also possible to declare custom SchemaTypes if the built-in ones fail to suit your

needs. The majority of the SchemaTypes should be fairly self-explanatory; most of

them map directly to native JavaScript types; however, Mixed and ObjectId merit

some further discussion.

Mixed Schema Type
The Mixed schema type is essentially a wildcard. Any value can be associated with

a schema type listed as Mixed. This flexibility comes with a trade-off, however; it

is difficult to maintain. Because Mongoose has no reliable way to compare changes

to the value, the developer is responsible for alerting Mongoose any time the value

changes. Using Mixed is best avoided, unless you’re really unsure what data is going

to be used for the particular key.

ObjectID Schema Type
It is worth repeating that MongoDB is not a relational database. There isn't a concept

of foreign keys or many-to-many relationships. MongoDB is a database to store

documents, generally JSON objects. That being said, an ObjectId schema type allows

you to store MongoDB unique identifiers in memory. This, combined with some

other schema options, allows you to reference sub-documents from other documents.

Mongoose Is Not MySQL

When you first realize that you can refer to other documents like a relational

database, you will be tempted to try to make MongoDB work like MySQL. Avoid

this for your own sanity. Trying to combine aspects of both databases ends up

making work in MongoDB much more difficult. You’ll spend many hours trying

to make MongoDB work like SQL, and it just won’t.

101Interacting with MongoDB Using Mongoose

Example Mongoose Schema
We’ll use listing 8-1 for the rest of our discussion of Mongoose schemas. We’re going

to declare two schemas: one for a team and one for an employee.

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var TeamSchema = new Schema({
 name: {
 type: String,
 required: true
 }
});

var EmployeeSchema = new Schema({
 name: {
 first: {
 type: String,
 required: true
 },
 last: {
 type: String,
 required: true
 }
 },
 team: {
 type: Schema.Types.ObjectId,
 ref: 'Team'
 },
 image: {
 type: String,
 default: 'images/user.png'
 },
 address: {
 lines: {
 type: [String]
 },
 postal: {
 type: String
 }
 }
});

Listing 8-1. A basic employee Mongoose Schema

Full Stack JavaScript Development with MEAN102

Schema is a constructor that takes a key-value pair object that describes our schema.

The team schema is defined to store only the name of the team.

The employee schema is more interesting. Every employee document is going to

have a name object with a first and last key. Both of those values are required

and must be strings. The team key is how we can create a reference to another doc-

ument/schema. The Schema.Types.ObjectId indicates that the value for team is

going to be a MongoDB unique identifier and the ref key alerts Mongoose what

model to use when this value is populated from the database. This will become

clearer as we discuss models next.

The image key indicates that the value will be a string; if the value is absent, im-

ages/user.png will be used instead. address consists of an array of strings for line

and a string for postal. We want to support internationalization, so we'll be better

served using a String instead of a number.

Looking at the completed schema, you’ll notice that it reads very easily. It is quite

clear at a glance how our documents are going to be structured in the database. Re-

member, a schema tells Mongoose how data is going to be sent in and out of our

database. Suppose we want to add city to address in the future. With a document

storage database such as MongoDB, that would be a simple change. We’d add city

to EmployeeSchema, and now city would be available to read and write for any

Employee documents.

This is only the tip of the iceberg for Mongoose schemas. You can build very ad-

vanced and powerful schemas working with all the different options provided by

Mongoose. For further reading, check out the Schemas section on the official Mon-

goose documentation page.4

Mongoose Models
We’ve mentioned models a few times, so let’s now examine what models are and

how we can use them. Instances of a model represent documents in the MongoDB

database. When you execute a query, the resultant document is fed through the

proper schema and a model is returned and ready for use. Most of the time you’ll

be interacting with models, rather than schemas, when working with Mongoose.

4 http://mongoosejs.com/docs/guide.html

103Interacting with MongoDB Using Mongoose

http://mongoosejs.com/docs/guide.html
http://mongoosejs.com/docs/guide.html

Let’s update Listing 8-1 and insert a few teams into our database:

[...]
var db = mongoose.connection;
var dbUrl = 'mongodb://username:password@ds043917.mongolab.com:43917
➥/humanresources';

var TeamSchema = new Schema({
 name: {
 type: String,
 required: true
 }
});
var Team = mongoose.model('Team', TeamSchema);

db.on('error', function () {
 console.log('there was an error communicating with the database');
});

mongoose.connect(dbUrl, function (err) {
 if (err) {
 return console.log('there was a problem connecting to the
➥database!' + err);
 }

 console.log('connected!');
 var team = new Team({
 name: 'Product Development'
 });

 team.save(function (error, data) {
 if (error) {
 console.log(error);
 } else {
 console.dir(data);
 }

 db.close();
 process.exit();
 });
});

Listing 8-2. Writing a team into the database

Full Stack JavaScript Development with MEAN104

Before moving forward, be sure to set up a MongoDB instance with MongoLab as

per the setup instructions in Chapter 7. The dbUrl in Listing 8-2 is for demonstration

purposes only, and will need to be updated to point to your MongoLab database

instance.

We’ve moved some of the original code around for brevity and to emphasize adding

specific items to the database. We establish a connection to the database and then

set up some event listeners to the mongoose.database object for error events. Inside

of the mongoose.connect callback, we instantiate a new Team model and assign the

name key.

The line var Team = mongoose.model('Team', TeamSchema); essentially tells

Mongoose that any time we want to create a Team model, it needs to adhere to the

TeamSchema. mongoose.model() returns a function that can be considered a con-

structor. Inside the "open" event callback, we use the Team constructor to create an

instance of a team and set name.

Assuming the connection to the database is correct, you should see { __v: 0,

name: 'Product Development', _id: 53c32948e385c35d71ad6797 } or similar

logged to the console. This means that there’s now one Team document stored in

the database with the name'Product Development.' You should notice the two ad-

ditional keys in the result of the save operation: __v and _id. __v is an internal key

that Mongoose uses to keep track of versions and changes to the document that this

model represents. _id is the auto-generated unique identifier (ObjectId) for this

document inside MongoDB.

Our solution is okay if we only want a single team, but what if we wanted to add

three or four teams in a row? Let’s refactor to insert several teams with one command:

[...]

mongoose.connect(dbUrl, function () {
 console.log('connected!');

 Team.create([{
 name: 'Product Development'
 }, {
 name: 'Dev Ops'
 }, {
 name: 'Accounting'

105Interacting with MongoDB Using Mongoose

 }], function (error, pd, devops, acct) {
 if (error) {
 console.log(error);
 } else {
 console.dir(pd);
 console.dir(devops);
 console.dir(acct);

 db.close();
 process.exit();
 }
 });
});

Listing 8-3. Inserting multiple teams into the database

Team.create allows us to create several new documents in a single command. This

is much more convenient than doing several document saves in a row. It’s worth

noting that this is only a convenience method rather than a true bulk insert. The

underlying Mongoose implementation still loops through each element and inserts

them one at a time.

Creating More Documents
Let’s add some employees to our teams. We certainly can add employees and teams

separately to each other, but remember back to our EmployeeSchema: we have a team

key that stores Schema.Types.ObjectId values. While MongoDB has no concept of

foreign keys, we can retrieve documents from different collections with a single

query using Mongoose.

The team key is specified to store Schema.Types.ObjectId, which represents the

primary identifier of MongoDB documents. The ref key in EmployeeSchema instructs

Mongoose to find a document inside the Team collection with the unique ID (_id)

value equal to the value stored in team. In this way, we can simulate a foreign key

relationship; however, it is different to an SQL foreign key.

Traditional SQL databases enforce referential integrity, which means that you’re

unable to create a relationship from one table to another without the keys from both

tables existing and being valid. In MongoDB, there is no concept of referential integ-

rity because there are no foreign keys. So any ObjectId value can be stored in the

Full Stack JavaScript Development with MEAN106

team key and there will be no complaint from MongoDB. The same rules apply to

deletes. If all our Employee documents have their team value set to the _id associated

with the Dev Ops team, the Dev Ops team could be freely deleted at any time. Think

of references more as query shortcuts than traditional foreign-key relationships from

SQL.

Because this script is becoming more complicated with several callbacks, we’ll do

a little refactoring and break each of our steps into functions and call them one at

a time. Remember, each step is asynchronous, so we should plan on passing callback

functions as parameters that will be called when the database activity is complete:

[...]

var EmployeeSchema = new Schema({...});

var Employee = mongoose.model('Employee', EmployeeSchema);
[...]
function insertTeams (callback) {
 Team.create([{
 name: 'Product Development'
 }, {
 name: 'Dev Ops'
 }, {
 name: 'Accounting'
 }], function (error, pd, devops, acct) {
 if (error) {
 return callback(error);
 } else {
 console.info('teams successfully added')
 callback(null, pd, devops, acct);
 }
 });
}

function insertEmployees (pd, devops, acct, callback) {
 Employee.create([{
 name: {
 first: 'John',
 last: 'Adams'
 },
 team: pd._id,
 address: {
 lines: ['2 Lincoln Memorial Cir NW'],

107Interacting with MongoDB Using Mongoose

 zip: 20037
 }
 }, {
 name: {
 first: 'Thomas',
 last: 'Jefferson'
 },
 team: devops._id,
 address: {
 lines: ['1600 Pennsylvania Avenue', 'White House'],
 zip: 20500
 }
 }, {
 name: {
 first: 'James',
 last: 'Madison'
 },
 team: acct._id,
 address: {
 lines: ['2 15th St NW', 'PO Box 8675309'],
 zip: 20007
 }
 }, {
 name: {
 first: 'James',
 last: 'Monroe'
 },
 team: acct._id,
 address: {
 lines: ['1850 West Basin Dr SW', 'Suite 210'],
 zip: 20242
 }
 }], function (error, johnadams) {
 if (error) {
 return callback(error);
 } else {
 console.info('employees successfully added');
 callback(null, {
 team: pd,
 employee: johnadams
 });
 }
 })
}

Full Stack JavaScript Development with MEAN108

mongoose.connect(dbUrl, function (err) {
 if (err) {
 return console.log('there was a problem connecting to the
➥database!' + err);
 }
 console.log('connected!');

 insertTeams(function (err, pd, devops, acct) {
 if (err) {
 return console.log(err)
 }
 insertEmployees(pd, devops, acct, function (err, result) {
 if (err) {
 console.error(err);
 } else {
 console.info('database activity complete')
 }

 db.close();
 process.exit();
 });
 });
});

Listing 8-4. Inserting employees

Listing 8-4 looks very different to Listing 8-3. We’ve created two new functions:

insertTeams and insertEmployees. After establishing a connection to the database,

we want to call insertTeams and pass a callback function. After the teams have

been inserted, we want to call insertEmployees and pass the results of insertTeams,

as well as a callback into insertEmployees. After the employees have been inserted,

we’ll execute the final callback, log the results to the console, close the database

connection, and exit the process. We’ll have a use for result in the next step. For

now, just think of it as a data store that we’ll pass around to use in different functions

that can change as database activity is completed.

Simple Queries
Now that our database has some data in it, let’s write a few simple queries. A com-

mon database query is to retrieve a document by its ID:

109Interacting with MongoDB Using Mongoose

function retrieveEmployee (data, callback) {
 Employee.findOne({
 _id: data.employee._id
 }).populate('team').exec(function (error, result) {
 if (error) {
 return callback (error);
 } else {
 console.log('*** Single Employee Result ***');
 console.dir(result);
 callback(null, data);
 }
 });
}
[...]
insertEmployees(pd, devops, acct, function (err, result) {

 retrieveEmployee(result, function (err, result) {
 if (err) {
 console.error(err);
 } else {
 console.info('database activity complete')
 }

 db.close();
 process.exit();
 });
});

Listing 8-5. Retrieving a single employee

The retrieveEmployee function uses the findOne, populate, and exec functions

attached to the Employee model. findOne accepts a key-value pair as an argument.

The logic indicates that we want to return a single Employee document with an _id

equal to data.employee._id. The populate function takes several parameters, but

for our purposes we only need to supply team because that's the additional document

we want to populate. This is where the team key in EmployeeSchema comes into

play. Finally, exec runs the query against the database.

After running this, you should see the "John Adams" document logged out to the

console. Notice that the team key has been populated with a complete Team docu-

ment.

Full Stack JavaScript Development with MEAN110

Suppose we wanted to find all the employees in our database whose first name

starts with a “J.” Let’s add another function to return all the employees with this

criteria:

function retrieveEmployees (data, callback) {
 Employee.find({
 'name.first': /J/i
 }, function (error, results) {
 if (error) {
 return callback(error);
 } else {
 console.log('*** Multiple Employees Result ***')
 console.dir(results);
 callback(null, data);
 }
 });
}
[...]
retrieveEmployee(result, function (err, result) {

 retrieveEmployees(result, function (err, result) {
 if (err) {
 console.error(err);
 } else {
 console.info('database activity complete')
 }

 db.close();
 process.exit();
 });
});

Listing 8-6. Retrieving an employee by name

The Employee.find method can take several distinct arguments; it is the primary

entry point for database querying. In this example, we’re indicating that we want

all the Employee documents from the database with a first name that starts with

“J,” and the search should be case insensitive. When retrieveEmployees is executing

in our async.waterfall, the employees whose first name start with “j” should now

be logged to the console.

111Interacting with MongoDB Using Mongoose

Updating
Oops! We set one of our employee’s names to “John Adams” when we really meant

“Andrew Jackson.” Let’s write a basic function to update that single employee. Back

in the insertEmployees function, we started passing around a data object to the

subsequent waterfall functions. The data object has a single employee and single

team attached to it; let’s use that in our update function:

function updateEmployee (first, last, data, callback) {
 console.log('*** Changing names ***');
 console.dir(data.employee);

 var employee = data.employee;
 employee.name.first = first;
 employee.name.last = last

 employee.save(function (error, result) {
 if (error) {
 return callback(error);
 } else {
 console.log('*** Changed name to Andrew Jackson ***');
 console.log(result);
 callback(null, data);
 }
 });
}
[...]
retrieveEmployees(result, function (err, result) {

 updateEmployee(result, function (err, result) {
 if (err) {
 console.error(err);
 } else {
 console.info('database activity complete')
 }

 db.close();
 process.exit();
 });
});

Listing 8-7. Updating an employee

Full Stack JavaScript Development with MEAN112

data.employee is still an Employee model from insertEmployees. Inside updateEm-

ployee we change the values of name.first and name.last, and then call save.

You’ll see when we’ve logged out the result that the data has changed in the database.

Summary
It is impossible to cover every aspect of a new database in a few pages. We hope

this section of the book will serve as a primer and a springboard for further learning

and experimentation, and encourage you to check out both MongoDB5 and Mon-

goose6 on your own.

One task we left out of this example was removing documents from the database.

It is good practice to clean out any old or bad data before you start priming a new

database. We encourage you to write two functions that delete all the employees

and teams from the database before we start inserting anything.

5 http://www.mongodb.org/
6 http://mongoosejs.com/index.html

113Interacting with MongoDB Using Mongoose

http://www.mongodb.org/
http://mongoosejs.com/index.html
http://mongoosejs.com/index.html

Chapter9
Using MongoDB and Mongoose in Our

Sample App
In Chapter 6, we began work on our example human resources application. At the

time, Node was unfortunately the only technology that had been introduced, so the

application in Chapter 6 only consisted of a Node HTTP server returning hard-coded

employee data from a JSON file. Now that we have a good understanding of MongoDB

and the Mongoose module, we can update the example application to use a database.

This chapter will build on the server from Chapter 6. We’re going to assume that

you have the example application code on your local machine already. We’ll also

assume that you have run npm install, and can successfully connect to the server

using a browser. For example, you should be able to view the employee listing

shown in Figure 9.1 by visiting the URL http://127.0.0.1:1337/employees.1

1 http://127.0.0.1:1337/employees

http://127.0.0.1:1337/employees

Figure 9.1. Output data from the example application

Adding Mongoose Models
We’re going to begin by creating two Mongoose models for working with our Mon-

goDB instance. The first step is to install the mongoose module and save it to the

project’s package.json using the command shown in Listing 9-1:

npm install --save mongoose

Listing 9-1. Install mongoose and add it to package.json

Once that is finished, create a directory named models in the root of the application.

This is where our model files will be saved. Inside the models directory, add two

files: employee.js and team.js. As the name implies, employee.js will store the

Full Stack JavaScript Development with MEAN116

model related to employee data. We’re also going to introduce the concept of em-

ployee teams, which is what will be stored in team.js.

The Employee Model
The code for the employee model is shown in Listing 9-2. After importing the mon-

goose model, a new schema is created. According to this schema, each employee

has:

■ an id (separate from Mongo’s _id property) that acts as a primary key
■ a name object
■ an address
■ a team designation
■ a profile picture

The team is simply a reference to an instance of the Team model, which we’ll be

creating soon. On the final line of Listing 9-2, a model is created from the schema

and exported:

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
var EmployeeSchema = new Schema({
 id: {
 type: String,
 required: true,
 unique: true
 },
 name: {
 first: {
 type: String,
 required: true
 },
 last: {
 type: String,
 required: true
 }
 },
 team: {
 type: Schema.Types.ObjectId,
 ref: 'Team'
 },
 image: {

117Using MongoDB and Mongoose in Our Sample App

 type: String,
 default: 'images/user.png'
 },
 address: {
 lines: {
 type: [String]
 },
 city: {
 type: String
 },
 state: {
 type: String
 },
 zip: {
 type: Number
 }
 }
});

module.exports = mongoose.model('Employee', EmployeeSchema);

Listing 9-2. Mongoose employee model

The profile picture stored in image is simply a string that denotes the URL of an

image file. If a profile picture is unspecified, use the default image shown in Fig-

ure 9.2. For now, you can ignore the profile picture. We’ll revisit this in Chapter

13, when we incorporate Express into our example app.

Figure 9.2. Default profile picture

Full Stack JavaScript Development with MEAN118

The Team Model
In most companies, employees work in teams. To capture this requirement, we’re

introducing the concept of teams into our application. Code for the Team model is

shown in Listing 9-4. Notice that this code uses the mongoose-post-find and async

modules. These will need to be installed using the following command:

npm install --save async mongoose-post-find

Listing 9-3. Installing and saving async and mongoose-post-find

The Team schema is simple. It only consists of a team name and an array of team

members. The interesting code surrounds the TeamSchema.plugin() call. plugin()

allows a Mongoose schema to utilize a plugin in order to extend built-in function-

ality. This is where mongoose-post-find is integrated to enable post find() and

findOne() hooks. These hooks are functions that are run when find() and find-

One() are called, and are able to modify the results before returning to the calling

function. These hooks update Employee documents to assign them to the correct

team.

var mongoose = require('mongoose');
var postFind = require('mongoose-post-find');
var async = require('async');
var Schema = mongoose.Schema;
var TeamSchema = new Schema({
 name: {
 type: String,
 required: true
 },
 members: {
 type: [Schema.Types.Mixed]
 }
});

function _attachMembers (Employee, result, callback) {
 Employee.find({
 team: result._id
 }, function (error, employees) {
 if (error) {
 return callback(error);
 }

119Using MongoDB and Mongoose in Our Sample App

 result.members = employees;
 callback(null, result);
 });
}

// listen for find and findOne
TeamSchema.plugin(postFind, {
 find: function (result, callback) {
 var Employee = mongoose.model('Employee');

 async.each(result, function (item, callback) {
 _attachMembers(Employee, item, callback);
 }, function (error) {
 if (error) {
 return callback(error);
 }

 callback(null, result)
 });
 },
 findOne: function (result, callback) {
 var Employee = mongoose.model('Employee');

 _attachMembers(Employee, result, callback);
 }
});

module.exports = mongoose.model('Team', TeamSchema);

Listing 9-4. Mongoose team model

Populating the Database
Now that our models are ready, we can populate our database. First, remove the

database directory as we’ll no longer need the hard-coded JSON database. Next,

create a file in the lib directory named connection.js. This file, shown in Listing

9-5, will establish a database connection and register our Mongoose models. We’ve

also added a SIGINT handler that will shut down the Mongo connection and the

Node process when the user presses Control+C:

Full Stack JavaScript Development with MEAN120

var mongoose = require('mongoose');
var dbUrl = 'mongodb://your_mongo_connection_url';

mongoose.connect(dbUrl);

// Close the Mongoose connection on Control+C
process.on('SIGINT', function() {
 mongoose.connection.close(function () {
 console.log('Mongoose default connection disconnected');
 process.exit(0);
 });
});

require('../models/employee');
require('../models/team');

Listing 9-5. MongoDB connection code

Next, we’re going to create a script that will populate the database with a set of data.

In the root of the project, create a directory named bin. Inside this, create a file

named populate_db.js. The contents of this file are shown in Listing 9-6. This

script is quite long, but fortunately it’s relatively uncomplicated.

We’re going to use the async module to execute a number of asynchronous database

operations without falling into Callback Hell―see the async.series() call near

the end of the script. We begin by deleting any existing Employee and Team docu-

ments, ensuring that we start with a clean slate.

Next, we populate the database with the employee and team information stored in

the data variable. The final step is to add employees to teams. This is done in the

updateEmployeeTeams() function. For the sake of simplicity, we’ll add everyone

to the same team. Once this is done, we close the database connection and exit.

var async = require('async');
var mongoose = require('mongoose');
require(process.cwd() + '/lib/connection');
var Employee = mongoose.model('Employee');
var Team = mongoose.model('Team');

var data = {
 employees: [
 {

121Using MongoDB and Mongoose in Our Sample App

 id: '1000003',
 name: {
 first: 'Colin',
 last: 'Ihrig'
 },
 image: 'images/employees/1000003.png',
 address: {
 lines: ['11 Wall Street'],
 city: 'New York',
 state: 'NY',
 zip: 10118
 }
 },
 {
 id: '1000021',
 name: {
 first: 'Adam',
 last: 'Bretz'
 },
 address: {
 lines: ['46 18th St', 'St. 210'],
 city: 'Pittsburgh',
 state: 'PA',
 zip: 15222
 }
 },
 {
 id: '1000022',
 name: {
 first: 'Matt',
 last: 'Liegey'
 },
 address: {
 lines: ['2 S Market Square', '(Market Square)'],
 city: 'Pittsburgh',
 state: 'PA',
 zip: 15222
 }
 },
 {
 id: '1000025',
 name: {
 first: 'Aleksey',
 last: 'Smolenchuk'
 },

Full Stack JavaScript Development with MEAN122

 image: 'images/employees/1000025.png' /* invalid image */,
 address: {
 lines: ['3803 Forbes Ave'],
 city: 'Pittsburgh',
 state: 'PA',
 zip: 15213
 }
 },
 {
 id: '1000030',
 name: {
 first: 'Sarah',
 last: 'Gay'
 },
 address: {
 lines: ['8651 University Blvd'],
 city: 'Pittsburgh',
 state: 'PA',
 zip: 15108
 }
 },
 {
 id: '1000031',
 name: {
 first: 'Dave',
 last: 'Beshero'
 },
 address: {
 lines: ['1539 Washington Rd'],
 city: 'Mt Lebanon',
 state: 'PA',
 zip: 15228
 }
 }
],
 teams: [
 {
 name: 'Software and Services Group'
 },
 {
 name: 'Project Development'
 }
]
};

123Using MongoDB and Mongoose in Our Sample App

var deleteEmployees = function(callback) {
 console.info('Deleting employees');
 Employee.remove({}, function(error, response) {
 if (error) {
 console.error('Error deleting employees: ' + error);
 }

 console.info('Done deleting employees');
 callback();
 });
};

var addEmployees = function(callback) {
 console.info('Adding employees');
 Employee.create(data.employees, function (error) {
 if (error) {
 console.error('Error: ' + error);
 }

 console.info('Done adding employees');
 callback();
 });
};

var deleteTeams = function(callback) {
 console.info('Deleting teams');
 Team.remove({}, function(error, response) {
 if (error) {
 console.error('Error deleting teams: ' + error);
 }

 console.info('Done deleting teams');
 callback();
 });
};

var addTeams = function(callback) {
 console.info('Adding teams');
 Team.create(data.teams, function (error, team1) {
 if (error) {
 console.error('Error: ' + error);
 } else {
 data.team_id = team1._id;
 }

Full Stack JavaScript Development with MEAN124

 console.info('Done adding teams');
 callback();
 });
};

var updateEmployeeTeams = function (callback) {
 console.info('Updating employee teams');
 var team = data.teams[0];

 // Set everyone to be on the same team to start
 Employee.update({}, {
 team: data.team_id
 }, {
 multi: true
 }, function (error, numberAffected, response) {
 if (error) {
 console.error('Error updating employe team: ' + error);
 }

 console.info('Done updating employee teams');
 callback();
 });
};

async.series([
 deleteEmployees,
 deleteTeams,
 addEmployees,
 addTeams,
 updateEmployeeTeams
], function(error, results) {
 if (error) {
 console.error('Error: ' + error);
 }

 mongoose.connection.close();
 console.log('Done!');
});

Listing 9-6. Script for populating the database

You can run this script using the command shown in Listing 9-7. It’s simple enough,

but we can go one step farther. Update the scripts entry in the package.json file, as

shown in Listing 9-8. Note, if there are any other entries in scripts, you should

125Using MongoDB and Mongoose in Our Sample App

take care to avoid overwriting them. This allows populate_db.js to be run using

the command npm run populate.

node bin/populate_db.js

Listing 9-7. Command used to run the populate_db.js script

"scripts": {
 "populate": "node ./bin/populate_db"
}

Listing 9-8. Adding the populate_db.js script to the package.json

Accessing the Database
After running npm run populate at least once, the database should be ready for use

by our application. Next, we’ll update the application code to use the database.

Replace the contents of lib/employees.js with the code shown in Listing 9-9. We

are maintaining the existing module interface, but using Mongoose to retrieve data

instead of hard-coded JSON:

var mongoose = require('mongoose');
var Employee = mongoose.model('Employee');

exports.getEmployees = getEmployees;
exports.getEmployee = getEmployee;

function getEmployees (callback) {
 Employee.find().sort('name.last').exec(callback);
}

function getEmployee (employeeId, callback) {
 Employee.findOne({
 id: employeeId
 }).populate('team').exec(callback);
}

Listing 9-9. Employee route handlers

Full Stack JavaScript Development with MEAN126

Notice that we’re using the sort()2 method to order the results in both functions.

sort() orders by one or more fields in ascending order, unless the field name is

prefixed with a "-". sort() can also accept an object as its argument. For more details

on usage, refer to the documentation.

The final step is to update index.js to establish a database connection for our app.

This is a simple one-line change. After the line that reads var colors = re-

quire('colors');, add the code shown in Listing 9-10 on the third line of index.js:

require('./lib/connection');

Listing 9-10. Establishing a database connection in index.js

Our application should be completely configured to work with Mongo. Now when

you visit http://127.0.0.1:1337/employees,3 you should see a response containing

Mongo's _id property as shown in Figure 9.3.

2 http://mongoosejs.com/docs/api.html#query_Query-sort
3 http://127.0.0.1:1337/employees

127Using MongoDB and Mongoose in Our Sample App

http://mongoosejs.com/docs/api.html#query_Query-sort
http://127.0.0.1:1337/employees

Figure 9.3. Example data from the MongoDB example application

Summary
This chapter has continued the development of our human resources example ap-

plication. In this chapter, we have replaced a hard-coded JSON database with a

Mongoose implementation that accesses a MongoDB back end. The next time we

revisit our example app, we’ll be transitioning from Node’s core http module to

the much more powerful Express framework. Before we jump into Express, though,

Chapter 10 is going to explore SQL databases as an alternative to MongoDB.

Full Stack JavaScript Development with MEAN128

Chapter10
Alternatives to Mongo
MongoDB is a fantastic technology, but it is far from being the only option when it

comes to adding a data store to your applications. There are a number of NoSQL

alternatives such as Redis1, CouchDB2, and Cassandra3. Alternatively, you could

turn to a relational database management system such as MySQL,4 Oracle5, or SQL

Server6. Using a relational database will require you to understand SQL, but picking

up the basics of SQL is relatively easy. This chapter explores MySQL as a free, rela-

tional alternative to MongoDB. Technically, this deviates from the MEAN stack, but

we feel strongly about exploring popular and viable alternatives.

1 http://redis.io/
2 http://couchdb.apache.org/
3 http://cassandra.apache.org/
4 http://www.mysql.com/
5 https://www.oracle.com/database/index.html
6 http://www.microsoft.com/en-gb/server-cloud/products/sql-server/

http://redis.io/
http://couchdb.apache.org/
http://cassandra.apache.org/
http://www.mysql.com/
https://www.oracle.com/database/index.html
http://www.microsoft.com/en-gb/server-cloud/products/sql-server/
http://www.microsoft.com/en-gb/server-cloud/products/sql-server/

Relational Databases and SQL
Relational databases are still hugely popular, despite the rise of NoSQL alternatives.

According to the db-engines.com rankings,7 the four most popular databases—Oracle,

MySQL, SQL Server, and PostgreSQL8—are all relational databases. So if this book

were to ignore relational databases, we’d be doing a huge disservice to our readers.

Many people—the authors of this book included—actually prefer relational databases

due to SQL’s simplicity, guaranteed data consistency, and extensive support of data

joins.

In relational databases, data is stored in a collection of tables. Tables can be thought

of as a 2x2 grid of data. Columns in the grid are fields that every table entry must

have, and represent the table’s schema. The rows in a table, known as records or

tuples, are the data values that must conform to the schema.

An example table is created using the SQL CREATE command shown in Listing 10-

1. This command creates a table named Presidents. All records in this table must

have Id, Name, and Terms fields in order to conform to the defined schema. The Id

field is an unsigned integer that cannot be null, and whose value is automatically

incremented by 1 each time a new record is added. The AUTO_INCREMENT property

makes the Id field ideal for use as a primary key. A primary key is one or more

fields that uniquely identify a record in a table. The other fields in the table are

used to store the presidents’ names and number of terms served.

CREATE TABLE Presidents (
 Id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 Name VARCHAR(100) NOT NULL,
 Terms INT UNSIGNED NOT NULL,
 PRIMARY KEY(Id)
);

Listing 10-1. An SQL command to create a Presidents table

7 http://db-engines.com/en/ranking
8 http://www.postgresql.org/

Full Stack JavaScript Development with MEAN130

http://db-engines.com/en/ranking
http://www.postgresql.org/

Use an Online SQL Playground to Try These Examples

As an alternative to installing MySQL on your machine, you can use an online

SQL playground such as SQL Fiddle.9 Heroku and other PaaS providers also

provide convenient cloud hosting of MySQL databases. We’re using Heroku’s

ClearDB MySQL Database add-on, which can easily be added to your application

using the command heroku addons:add cleardb.

The next step is to populate the Presidents table with data. In SQL, this is done

using the INSERT command. Listing 10-2 shows an example INSERT command that

adds two records to the Presidents table. The (Name, Terms) part of the command

lists the field names and their expected order in the VALUES section. As you might

expect, the VALUES section provides the data to be inserted. Notice that the name

and number of terms are provided, but the Id field is not. This is where the

AUTO_INCREMENT flag used during the table creation is extremely convenient.

INSERT INTO Presidents (Name, Terms) VALUES
 ('Bill Clinton', 2),
 ('George W Bush', 2);

Listing 10-2. An SQL command to insert values into the Presidents table

To retrieve data from a relational database, use the SQL SELECT command. The

simplest incarnation of this command, which retrieves everything from the Presid-

ents table, is shown in Listing 10-3. The result of this command is shown in

Table 10.1.

SELECT * FROM Presidents;

Listing 10-3. An SQL command to retrieve values from the Presidents table

Table 10.1. Presidents table after inserting data

TermsNameID

2Bill Clinton1

2George W Bush2

9 http://sqlfiddle.com/

131Alternatives to Mongo

http://sqlfiddle.com/

The SELECT command supports a wide range of options. For example, assume that

we only wanted to select the name and number of terms served for the presidents

whose first name is Bill. Listing 10-4 shows the SQL command to accomplish this.

Notice that the command specifically requests the Name and Terms fields instead of

the * wildcard. This command also uses a WHERE clause to only select records where

the Name field matches the regular expression Bill %. SQL uses the % character as

a wildcard. In more familiar syntax, this regular expression would be /Bill */.

The results of this query are shown in Table 10.2. For a full overview of the suppor-

ted SELECT options, see the MySQL SELECT documentation.10

SELECT Name, Terms FROM Presidents WHERE Name LIKE 'Bill %';

Listing 10-4. An SQL command to retrieve presidents named Bill

Table 10.2. Selecting presidents whose first name is Bill

TermsNameID

2Bill Clinton1

The SQL UPDATE command is used to modify existing records. A basic example

update is shown in Listing 10-5 where the command renames President George W

Bush to his father’s name.

UPDATE Presidents SET Name = 'George H Bush' WHERE Name = 'George W
➥Bush';

Listing 10-5. Example SQL UPDATE command

The final CRUD operation to cover is delete. To remove records from a table, use

the DELETE command. The simplest version of this command, shown in Listing 10-

6, removes all records from a table:

DELETE FROM Presidents;

Listing 10-6. Removing all records from the Presidents table

10 http://dev.mysql.com/doc/refman/5.7/en/select.html

Full Stack JavaScript Development with MEAN132

http://dev.mysql.com/doc/refman/5.7/en/select.html

You can also remove records more selectively using SELECT style clauses. For ex-

ample, to remove all presidents whose last name is Bush, use the command shown

in Listing 10-7:

DELETE FROM Presidents WHERE Name LIKE '% Bush';

Listing 10-7. Removing all presidents whose last name is Bush

To delete the table itself, use the DROP command as shown in Listing 10-8. The only

problem with this command is that it will cause an error if the table does not exist

for whatever reason. To work around this, include IF EXISTS in the command, as

shown in Listing 10-9.

DROP TABLE Presidents;

Listing 10-8. Example DROP TABLE command.

DROP TABLE IF EXISTS Presidents;

Listing 10-9. DROP TABLE command using IF EXISTS

The mysql Module
Now that we’ve covered the basics of relational databases and SQL, it’s time to see

how to access MySQL from Node applications. There is no built-in support for

MySQL, but the mysql11 module is extremely popular. In fact, it is even referenced

in the MySQL documentation.12 To install the mysql module, use the command

shown in Listing 10-10:

npm install mysql

Listing 10-10. Installing the mysql module

11 https://github.com/felixge/node-mysql
12 http://dev.mysql.com/doc/ndbapi/en/ndb-nodejs-setup.html

133Alternatives to Mongo

https://github.com/felixge/node-mysql
http://dev.mysql.com/doc/ndbapi/en/ndb-nodejs-setup.html

Connecting to a Database
The first step to working with MySQL is establishing a connection. By this point,

you should have either installed MySQL,13 or provisioned cloud hosting. Next,

connect to your database using the code shown in Listing 10-11. There are a few

items to point out here. First, the mysql module is imported, then the createCon-

nection() method is used to create a connection object. The connection string

passed to createConnection() includes the username and password (if required),

the host and port, and the database name. These will all vary depending on your

setup.

After calling createConnection(), you must still call the connection’s connect()

method. This method is asynchronous and its callback takes a possible error condi-

tion as an argument. If everything is established correctly, the error argument

should not be set, and you should be connected to your database.

var mysql = require('mysql');
var connection =
 mysql.createConnection('mysql://user:secret@localhost:3306/dbname');

connection.connect(function(error) {
 if (error) {
 return console.error(error.message);
 }

 console.log('successfully connected!');
});

Listing 10-11. Connecting to a MySQL database

It is worth pointing out that createConnection() also accepts an object argument

instead of a connection string. For example, the same connection could have been

established using the call shown in Listing 10-12:

var mysql = require('mysql');
var connection = mysql.createConnection({
 host: 'localhost',
 port: 3306,

13 http://dev.mysql.com/doc/refman/5.7/en/installing.html

Full Stack JavaScript Development with MEAN134

http://dev.mysql.com/doc/refman/5.7/en/installing.html

 user: 'user',
 password: 'secret',
 database: 'dbname'
});

Listing 10-12. Calling createConnection() with an object instead of a connection

string

Connection Pooling
In a production server, it is inefficient to establish a new connection each time the

application needs to access the database. Alternatively, you can create a pool of

connections to be shared among all incoming requests. Each time the application

needs to connect to the database, it can request a connection from the pool. If no

connections are available, the request will be placed in a queue. Once a connection

is available, it is allocated to perform some work. Once its work is finished, the

connection is returned to the pool for future use.

Creating a connection pool is very similar to creating individual connections. An

example that creates a connection pool is shown in Listing 10-13. The connection

pool is created using the createPool() method, which is very similar to createCon-

nection(); however, it accepts several additional parameters: connectionLimit,

queueLimit, and waitForConnections. connectionLimit sets the maximum size

of the pool and defaults to 10. queueLimit sets the maximum size of the connection

backlog queue size and defaults to no limit. waitForConnections is a Boolean that

defaults to true. If waitForConnections is true, requests are added to the queue

if no connections are available. Otherwise, the callback is invoked immediately

with an error.

var mysql = require('mysql');
var pool = mysql.createPool({
 host: 'localhost',
 user: 'username',
 password: 'secret',
 database: 'dbname',
 connectionLimit: 20,
 queueLimit: 100,
 waitForConnections: true
});

135Alternatives to Mongo

pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error.message);
 }

 console.log('successfully obtained connection!');
});

Listing 10-13. Creating a connection pool

Note that the connection’s connect() method is not called. Instead, the pool’s

getConnection() method is used to obtain a connection. The connection passed

as the second argument to the callback will already be in the connected state,

meaning that there is no need to call connect().

The final point worth mentioning in this example is that the code will not terminate

on its own. Because a pool of open connections has been established, the program

is not able to exit single-handedly. Instead, you can terminate the program using

Control-C. If you are bothered by this behavior, force the program to exit using

process.exit(0).

Closing Connections
Non-pooled connections are closed using the end() and destroy() methods. end()

closes the connection gracefully, meaning that any queued queries are allowed to

execute. destroy(), on the other hand, immediately shuts down the underlying

socket, killing anything that is currently in progress.

Pooled connections are closed using the release() and destroy() methods. re-

lease() returns the connection to the pool, while destroy() shuts down the con-

nection and removes it from the pool. If a connection is destroyed, the pool will

replace it. Listing 10-14 shows an updated version of Listing 10-13, which acts re-

sponsibly and releases the connection back to the pool:

var mysql = require('mysql');
var pool = mysql.createPool({
 host: 'localhost',
 user: 'username',
 password: 'secret',
 database: 'dbname'

Full Stack JavaScript Development with MEAN136

});

pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error.message);
 }

 console.log('successfully obtained connection!');
 connection.release();
});

Listing 10-14. Releasing a pooled connection

Executing Queries
The query() method of a connection object is used to send SQL commands to

MySQL. query() takes two arguments. The first is an SQL string, while the second

is a callback function that takes error and results object as arguments. Listing 10-15

shows an example that creates the familiar Presidents table using the query()

method:

var mysql = require('mysql');
var pool = mysql.createPool({
 host: 'localhost',
 user: 'username',
 password: 'secret',
 database: 'dbname'
});

pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error.message);
 }

 var sql = 'CREATE TABLE Presidents (' +
 'Id INT UNSIGNED NOT NULL AUTO_INCREMENT,' +
 'Name VARCHAR(100) NOT NULL,' +
 'Terms INT UNSIGNED NOT NULL,' +
 'PRIMARY KEY(Id))';

 connection.query(sql, function(error, results) {
 connection.release();

137Alternatives to Mongo

 if (error) {
 return console.error(error.message);
 }

 console.log('successfully created table!');
 });
});

Listing 10-15. Creating the Presidents table using the query() method

A more complete example is shown in Listing 10-16. It uses the Presidents table

created in Listing 10-15, so make sure that table exists first. The example in Listing

10-16 inserts data into the table, reads the data back using a SELECT command, and

then drops the table:

var mysql = require('mysql');
var pool = mysql.createPool({
 host: 'localhost',
 user: 'username',
 password: 'secret',
 database: 'dbname'
});

pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error.message);
 }

 var insertSql = 'INSERT INTO Presidents (Name, Terms) VALUES' +
 '(\'Bill Clinton\', 2),' +
 '(\'George W Bush\', 2)';

 connection.query(insertSql, function(error, results) {
 if (error) {
 connection.release();
 return console.error(error.message);
 }

 var selectSql = 'SELECT * FROM Presidents';

 connection.query(selectSql, function(error, results) {
 if (error) {
 connection.release();

Full Stack JavaScript Development with MEAN138

 return console.error(error.message);
 }

 console.log('results of SELECT:');
 console.log(JSON.stringify(results, null, 2));

 var dropSql = 'DROP TABLE IF EXISTS Presidents';

 connection.query(dropSql, function(error, results) {
 connection.release();

 if (error) {
 return console.error(error.message)
 }

 console.log('table dropped!');
 });
 });
 });
});

Listing 10-16. Inserting data, reading it back, and then deleting a table

The output of Listing 10-16 is shown in Listing 10-17 below. Notice that the results

of the SELECT query are returned as an array of objects. Although not shown in this

example, it is worth inspecting the output of non-SELECT queries, as they often in-

clude useful information such as the number of rows affected.

$ node mysql-exercise.js
results of SELECT:
[
 {
 "Id": 1,
 "Name": "Bill Clinton",
 "Terms": 2
 },
 {
 "Id": 2,
 "Name": "George W Bush",
 "Terms": 2

139Alternatives to Mongo

 }
]
table dropped!

Listing 10-17. Result of executing the code in Listing 10-16

Summary
This chapter has shown how relational databases can be used with Node.js applic-

ations. More specifically, it explored how the mysql Node module is used to interact

with a MySQL database. After completing this part of the book, you should feel a

little more comfortable interacting with most types of databases. There is still a lot

more to learn about relational databases. If you’re interested in learning more, the

MySQL documentation14 is a good place to start.

The next part of the book moves away from databases and towards web server

software. You’ve already learned about Node’s core http module. The next part,

which focuses on the Express framework, raises the level of abstraction in an effort

to increase developer productivity.

14 http://dev.mysql.com/doc/

Full Stack JavaScript Development with MEAN140

http://dev.mysql.com/doc/

Chapter11
Introduction to Express
We touched on Express earlier, but now we’re going to really dive into it. Express1

is a Node module that provides a thin web application framework around the core

Node modules discussed in Chapter 5. As of this writing, it is the most starred

module on the npm registry.

A Google search for “getting started with Node” will almost always lead you to in-

stalling and using Express. It is a very mature and community-tested framework.

The first version of Express (1.0.0) was released in November 2010 after going

through several beta and release candidate versions. The lead developer of Express

from beta though version 3 was TJ Holowaychuk who worked alongisde a few key

members of the GitHub community. After version 3, Holowaychuk became less in-

volved with its daily development, handing the reins to a group of core GitHub

community members. In July 2014, Holowaychuk handed ownership of Express to

a Node startup company named StrongLoop. StrongLoop continues to keep Express

open source, and the majority of the core community still work with StrongLoop

on the steady development of Express.

1 http://expressjs.com/

http://expressjs.com/

A framework is only as successful as who use it. Express is used by companies such

as MySpace, Apiary.io, Ghost, and Persona, a Mozilla-backed sign-in system. Express

was also used as the foundation for PayPal’s open-source KrakenJS framework,2

while StrongLoop uses Express for its LoopBack project.3 The complete list of fea-

tured companies using Express can be found on its website4. The list does not ac-

count for any internal/enterprise applications, personal web projects, or APIs being

built on top of the Express framework.

In this chapter, we’re going to discuss the basis of Express—the “E” of the MEAN

stack. Express provides request routing, a static file server, view engine integration,

and a plethora of community modules. Express is a very thin layer that sits on top

of the the core modules discussed in previous chapters. Working with a thin

framework means that the code you write is never too far away from the core features

of Node. Pipes and streams are still very easy to access in an Express application.

You also have direct access to the ClientRequest and ServerResponse core Node

objects. Behind all the trappings, an Express application still boils down to http.cre-

ateServer(...).

We’ve demonstrated and even built a few web servers that were very basic and only

required a few lines of JavaScript. If we can create a web server in only four or five

lines, why should we even use a framework? It might be easier to write all our own

code than try to learn another framework. Looking back at the code we wrote in

Chapter 6, there are a few issues that make it apparent why a framework is the right

way to go, namely:

■ maintainability
■ module integration
■ solution structure

Maintainability is going to be an issue in trying to write an entire Node web server

using only the built-in modules. We only created two real routes and there’s a fair

amount of code already. We have route parameters working, but what if we wanted

to have multiple route parameters? We’re also without support for any concept of

query-string parameters or different HTTP verbs. We could implement all of these

2 http://krakenjs.com/
3 http://strongloop.com/node-js/loopback/
4 http://expressjs.com/resources/applications.html

Full Stack JavaScript Development with MEAN142

http://krakenjs.com/
http://strongloop.com/node-js/loopback/
http://expressjs.com/resources/applications.html

features ourselves just using the core Node modules, but that would be inefficient.

Implementing simple cookie logic could be several hundred lines of code, and that’s

only one small feature out of many that a complete web server needs. It just isn’t

practical to write a whole web server using only core Node modules with everything

a modern-day web server is expected to do.

A second issue with our home-rolled server solution is modules. Modules are one

of the biggest driving forces in the Node ecosystem. What if you wanted to use a

server-side templating engine or a CSS precompiler? There are several Node options

available, but incorporating them with this current solution would be very tedious.

If we insist on only using the core modules, we are going to limit ourselves because

integrating many community modules will be difficult. Our server will end up being

lines and lines of JavaScript spaghetti code.

A third issue is that without a framework, your solution is completely unstructured.

Frameworks typically provide you with two big advantages. The first is all the tools,

functionality, and community that come with using a framework. The second is

that using frameworks provides a foundation to structure your solution. A framework

gives you tools, but also provides a blueprint for how to think about and structure

a solution. After all, a web server is a solved problem at this point; there really is

no need to reinvent the wheel.

A drawback of using a thin framework such as Express is that you still need to have

a reasonable understanding of the core modules discussed in Chapter 5. You also

need an understanding of how web servers are supposed to work with regard to

routes, status codes, and headers. Express, like any framework, isn’t an "easy button

for development. There are still challenges and problems that require solving. As-

pects such as cookie management, user authentication, and caching are open to the

developer to implement. Again, there are Express modules on the npm registry that

help solve these problems, but they don’t come built into Express and still require

integration code.

The Building Blocks of Express
An Express server can be broken down into three building blocks: the router, routes,

and middleware. Everything else are just refinements and further abstractions.

143Introduction to Express

Router
The core of any web server is robust request routing. If you think about the server-

client request life cycle, it essentially boils down to: the client requests a resource,

the server tries to locate the resource and if it's found, respond in a way that the

client is expecting. Without a structured way to handle and route requests, your

web server will do very little.

The core http module has no concept of resource routing. We had to write a regular

expression for each route. When the request came into the http server, we had to

check req.path against different regular expressions in if else blocks. In addition,

we had to add catchall logic to try to find CSS and HTML static files. It was fairly

tedious with only a few routes; imagine spanning that out into a production-ready

server. By contrast, Express provides an easy-to-use and expressive routing interface.

Generally creating a route is as simple as app.get('/employees/:id', func-

tion(res, res, next){...});. This creates a route in the routing table that will

match GET requests and have a URI of /employees/employee_id. When the match

occurs, the associated function will execute and send a response to the client. We’ll

cover more specifics and features about route declarations in a moment.

Route Lookup
The order in which routes are added to the router is very important. When a request

comes into the web server, the URI is run through the routing table. The first match

in the table is the code that is going to execute. If there is a second matching route

further down the route table, it will not be executed unless you do some internal

re-routing. Even if the second route is technically more specific, the first match will

always be the one that runs.

Static Files
A web server must have a simple way to serve static files. The average website can

have hundreds of static files all being served from the web server. There has to be

a way to alert the router that files in a specified directory do not need to be individu-

ally added to the routing table, and should be retrieved from the file system when

requested.

With Express, this is accomplished with express.static(directory). This essen-

tially creates a rule in the routing table to look for files in directory and, if they are

Full Stack JavaScript Development with MEAN144

found, serve the files. If they are not found, it will continue down the routing table

and try to match fileson another route. There will be a more complete example later

in this chapter on static files, but it was important to introduce static here in the

routing section.

Middleware
Middleware is any JavaScript function that has the function signature function

(req, res, next). A single Express route can have as many middleware functions

associated with it as needed. Every middleware function is executed in order from

left to right. Middleware functions can be used in any part of the request life cycle

right up until the response is sent back to the client. A request is considered complete

when a middleware function sends a response to the client. A middleware function

that completes a request is sometimes referred to as a handler. A middleware

function could be used to set a cookie or header, check a user log in status, compress

JavaScript, and thousands of other purposes.

Middleware Breakdown
Let’s examine each of the parameters in a middleware function for a better idea of

what they are used for. The req parameter is the incoming request object. It is the

same http.ClientRequest that we discussed in Chapter 6. By the time it reaches

our middleware functions, it has been augmented by Express to provide additional

functionality. It has new methods such as accepts(), get(), and is(). It also exposes

several new properties such as path, host, xhr, and cookies. For the full list that

Express adds to the http.ClientRequest object, check out the documentation.5

The res object is the response object. If you recall in Chapter 6, we discussed that

res is an http.ServerResponse object augmented by Express, just like the req object.

Express adds cookie(), redirect(), send(), and many other useful response

functions documented on the Express API documentation page.6

Finally, the next parameter is a callback function provided by the Express frame-

work. This is useful for middleware functions that have asynchronous activity.

Simply call next() when the code is complete to alert Express that this middleware

function is done. If the middleware is responsible for sending a response with

5 http://expressjs.com/4x/api.html#req.params
6 http://expressjs.com/4x/api.html#res.status

145Introduction to Express

http://expressjs.com/4x/api.html#req.params
http://expressjs.com/4x/api.html#res.status

res.send, there’s no need to call next. For every other non-terminating middleware

function, you must call next only once.

Notes about next

Just like every other callback function in Node, next has the signature of

next(error). If you try to pass data to another function with next, you’ll trigger

the Express error handler. As a general rule, any truthy value passed into next

will be treated as an error, preventing any further middleware functions from ex-

ecuting for the current request. The one exception to the truthy rule is passing

the string "route" to next. Passing "route" causes the Express router to skip

to the next middleware function or next matching route, assuming any exist. While

this technique can be useful at times, it can create routing scenarios that are diffi-

cult to trace and debug, so it should be used sparingly.

When your Express app becomes more complicated, you’ll eventually need to

pass data from one middleware function to another. Most people’s first instinct

is to try to pass data via next, but that will cause an error. Each new request re-

ceives a new copy of req and res at the beginning of the route. These objects are

passed by reference to each middleware function, and any changes you make to

req or res will be available to every downstream middleware function.

res.locals is the built-in Express container that is useful for passing data from

one function to the next. You can also create your own data container on either

req or res, such as res.myData.

It’s very important to always execute next in middleware functions that don’t

send responses. If you forget to do this, the response will just hang and never re-

spond. Even if there is no asynchronous code in the function, you still must call

next to keep the request flowing through the route.

Routes
A route can be thought of as consisting of an HTTP verb and a path. The HTTP verb,

or method, is generally one of four: GET, POST, PUT, and DELETE. A GET request is

used to get data from a web server. It is the most common type of request today,

and is used for both static content and dynamic information from the web server.

A POST request is the second-most common HTTP verb and is used to send data to

a web server. DELETE and PUT requests are far from common, but are gaining pop-

ularity as more and more browsers support them. DELETE is used to delete informa-

tion from a web server and PUT is generally used to update existing data on a server.

Full Stack JavaScript Development with MEAN146

There are a few other HTTP verbs defined,7 but the four listed are the ones on which

we’ll be focusing our attention. The most important difference in HTTP verbs is

how data is passed around. In a GET request, data is passed either in the URI or as

query-string parameters. For POST methods, there is a payload or body attached to

them. This allows POST requests to send much more information in the request

compared to GET requests. The DELETE method generally lacks a body, similar to

GET requests. Finally, PUT methods have a payload, just like POST.

The second half of an HTTP request is the uniform resource identifier, or URI. Every

request web browsers make is to some URI; www.google.com, for example, is a URI

that goes directly to the Google home page resources. URIs use two distinct mech-

anisms for passing parameter data to the web server: query-string parameters and

route parameters.

In Express route definitions, we combine the HTTP verb and a pattern to match

incoming URI requests. The pattern compontent is refered to a path. For example,

a typical Express path with route parameters looks like this: /teams/:teamName/em-

ployees/:employeeId.

As an example, suppose we had a running Express server and pointed a browser at

/teams/nodeTeam/employees/15?mode=short. The default behavior of a browser

is to send GET requests, so the browser would issue a request to our running Express

server that was a GET request for the resource located at /teams/nodeTeam/employ-

ees/15?mode=short. If we combine the verb and path concepts, we have a route

definition that would look like GET "/teams/:teamName/employees/:employeeId".

This route would match our request that we sent from the browser.

When the request comes into the Express router, the route parameters :teamName

and :employeeId will be parsed from the incoming URI and made available via

req.params.teamName and req.params.employeeId. The Express router will look

this route up in the routing table and if there is a match, the corresponding code

will be run and a response sent. The query-string part of the URI is not used in

routing decisions.

7 http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

147Introduction to Express

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Optional Parameters
In the previous example, all the route parameters are required because, without

them, the client request will match nothing in our routing table. Suppose we wanted

to allow clients to request all the employees on a team? Well, we could make the

:employeeId parameter optional. The assumption would be that without the this

parameter, we should return all the employees on the teamName team. If we postfix

a parameter with ?, it becomes optional. The updated path parameter would become

/teams/:teamName/employees/:employeeId?.

So there would be a match on this route path for both of these URIs: /teams/node-

Team/employees and /teams/nodeTeam/employees/15. While optional route para-

meters can sometimes be helpful, they can also create routing bugs that are difficult

to trace. If one developer created a route that matched on the path pattern

/teams/:teamName/employees/:employeeId? and another developer created another

route with the path /teams/:teamName/employees, both patterns will both match

requests to /teams/javaScriptTeam/employees. If there are two different routes

set up, which one will the router use? Remember one of the key points from the

router section: the first route that’s registered will be the entry in the route table

that is used. Rather than rely on the ordering of routes, it’s generally better to avoid

optional route parameters if they create confusion.

Finally, it is possible to have multiple optional parameters in a single route path.

Suppose we wanted to expand on our previous example and allow both :teamName

and :employeeId to be optional. This would allow users to obtain information about

a team or single employee all from the same route definition. It we update our

working example, the path value would become /teams/:teamName?/employees/:em-

ployeeId?. Now users can make requests to /team/node, /team/employees/15, and

/team/node/employees/15.All three of these URIs would be covered by our updated

path parameter. In general, this is not a recommended approach as it is hard to

document and unclear what the response will be based on a variety of parameter

options.

Other Route Options
Express also allows regular expressions to be used as URIs. When using regular

expressions for routes, the developer is responsible for handling any route paramet-

ers. Let’s rewrite "/teams/:teamName/employees" as a regular expression.

/^\/teams\/(\w+)\/employees$/i would be the equivalent URI definition. When

Full Stack JavaScript Development with MEAN148

using regular expressions, you’ll need to create capture groups using () to have

access to that value in any middleware functions.

It is worth mentioning here that, under the hood, Express converts all route defini-

tions to regular expressions. This shouldn’t be too surprising if you revisit Chapter

6 and look at how we set up our routes when we wrote our simple Node server.

Putting It Together
We’ve covered the building blocks of an Express app: the router, middleware

functions, static file server, and basic route explanations. Let’s put everything to-

gether with a very simple code example. Let’s create a small Express web server

that uses everything we’ve covered up to this point:

var express = require('express');
var app = express();

// Route one
app.get('/teams/:teamName/employees/:employeeId', function (req, res
➥, next) {
 console.log('teamName = ' + req.params.teamName);
 console.log('employeeId = ' + req.params.employeeId);
 res.send('path one');
});

// Route two
app.get('/teams/:teamName/employees', function (req, res, next) {
 console.log('setting content type');
 res.set('Content-Type', 'application/json');
 res.locals.data = 100 ;
 next();
}, function (req, res, next) {
 console.log('teamName = ' + req.params.teamName);
 console.log(res.locals.data);
 res.send('path two');
});

// Route three
app.get(/^\/groups\/(\w+)\/(\d+)$/, function (req, res, next) {
 console.log('groupname = ' + req.params[0]);
 console.log('groupId = ' + req.params[1]);
 res.send('path three');
});

149Introduction to Express

var server = app.listen(1337, function() {
 console.log('Server started on port 1337');
});

Listing 11-1. Creating a simple Express application

Listing 11-1 is a summation of most of the topics covered in this chapter. The first

two lines create the Express application. app.use(express.static(__dirname +

'/public')); sets up our static file server. We’ll go into more detail about app.use

in the next chapter. Remember, that line adds an entry into the routing table to look

for files in the public directory.

The first two app.get lines establish the routes we’ve been discussing throughout

this chapter. As you can see, we have access to the route parameters via req.params.

The final app.get line illustrates using regular expressions as the path parameter

of app.get.

Route two shows an example of multiple middleware functions in a single route.

When the route matches, Express will execute the first function in the Express lane.

In this example, we're going to log some information, set the "Content-Type"

header, attach a value to res.locals, and then call next(). Remember, you always

have to call next() unless you're ending the response with res.send() or some

other termination function. After calling next(), Express will advance to the next

middleware function; log the data from req.params.teamName, log the value attached

to res.locals.data, and then send a simple JSON object.

Route three illustrates using regular expression parameters. The parentheses around

the different path segments create regular expression capture groups. We access

each value by index via req.params[index]. Regular expression capture groups

are numbered and start at index 0. 0 correlates to the (\w+) capture group and 1

correlates to (\d+).

The last few lines create a server and start listening on port 1337. The neat thing

about app.listen is that it’s identical to the server.listen function we used when

we wrote a server using pure Node.

Try any of the following URIs in a browser to test the different routes and the results:

Full Stack JavaScript Development with MEAN150

■ /teams/javascript/employees/15 ― Should return "path one" and log teamName

= javascript employeeId = 15 to the console.

■ /teams/javascript/employees ― Should return "path two" and log setting

content type teamName = javascript. If you examine the response headers

with via curl or the development tools in your browser, you should see the

correct Content-Type header.

■ /groups/accounting/142 ― Should return "path three" and log groupname =

accounting groupId = 142 to the console.

The code in Listing 11-1 above should demonstrate how much easier this small

Express web server will be to maintain and debug than a Node server that only uses

the core modules. It is much easier to read, requires less code, and has more features.

Remember, even though Express is a framework, the underlying core modules are

never too far from reach.

Generating an Express App
If you remember back to Chapter 4, about modules, sometimes it’s best to install

modules globally because they provide a command line interface that would be

useful outside of a specific project. Let’s now install the express-generator module

globally. Once the install is complete, create an empty directory and run express

from the command line.

Let’s run through a high-level explanation of what the express generator does for

us. (We’ll go into much more detail in the next chapter about the actual contents

of these files.) You’ll notice that the generator creates several folders and files, giving

developers a reasonable and predictable project structure to work in. The generator

also creates a package.json file with some dependencies pre-filled in.

app.js is the main entry point for the application and where logic for the web

server resides. Remember our static file server that was configured to look inside

the public folder? The public folder was created and seeded with subfolders for images,

JavaScript files, and style sheets. We’ll have a use for those folders later.

Inside the routes folder are several files for declaring and attaching routes to the

Express app. This is a good pattern to follow. For a complete web server there could

151Introduction to Express

be thousands of routes, making the app.js file completely unmaintainable. It would

also be difficult to work in a team because that file would constantly be changing.

Jade
The views folder is set up to take advantage of Jade,8 a Node server-side templating

language. While we won’t be using Jade in this book, it is worth mentioning. Jade

is a templating engine, but it’s also a higher order language. You write your views

in the Jade language that are then compiled into raw HTML, allowing you to write

much more HTML with fewer characters. It also ensures that the HTML on your

web page is never broken nor incorrect. The compiler will throw errors if you try

to create invalid HTML.

Summary
Listing 11-1 is an Express app that is completely abstracted away from directly using

the http module. It allows us to declare routes in a simple and uniform way. It

provides a robust router, a built-in static fill server, and a programming pattern we

can follow to add more features and routes. It also promotes code reuse and modu-

larity with the concept of middleware functions.

Even though we can create a whole web server without directly using the http

module or any of the other core modules, they aren’t far from the surface. Both req

and res are core Node objects and app.listen is the same as server.listen.

This chapter demonstrated the basics of an Express application. In the next chapter,

we’ll go into detail about the Express app we generated in this chapter and discuss

the architecture of a typical Express web server.

8 http://jade-lang.com/

Full Stack JavaScript Development with MEAN152

http://jade-lang.com/

Chapter12
Architecture of an Express Application
In the previous chapter, we generated our first Express application. At the time of

writing, Express was in version 4 so that’s the version this book will be discussing.

The Express generator gives developers a great place to start building a new web

server. It provides a few simple routes, Jade templating integration, cookie and body

parsing, and static file serving. In this chapter, we’ll cover the important files and

concepts of the generated Express application. This will give you a strong under-

standing of the architecture of the Express ecosystem, as well as the interactions in

many of the framework’s moving parts.

Starting the Server
The first thing you’ll probably notice is that if you run node app.js, nothing hap-

pens. The generator created a bin folder with a www file inside of it. The intention

is to use this to start the server instead of app.js. To start your server, run node

bin/www. You can also run npm start as well because that command has been

entered into package.json. Once the server is running, point a web browser to local-

host:3000 and you should be greeted with a simple welcome page.

One thing worth mentioning right away is the addition of the bin folder and www

file. Very generally speaking, a Node convention is to put files that are intended to

be run from the command line inside a bin folder. The www file in the generated

application serves as the entry point for the Node application. The www file in this

example requires in app.js and starts the Express server.

app.js
Even though we don’t start the server with node app.js, app.js still houses the

majority of the server logic. Quickly glancing at the file, you should see a few famil-

iar concepts as well as some new items. Notice also the several instances of app.use.

We mentioned it in passing in the previous chapter, but let’s now discuss it in more

detail.

app.use
app.use registers a middleware function that will be called on every request that

comes into the web server. It’s useful for tasks that you need to happen on every

request. Remember, app.use just adds entries to the routing table. The same order

rules for other routes are in effect for app.use statements as well. The statements

will execute in the order in which they are registered, top to bottom, every time a

new request comes in.

Suppose you wanted to print a message to the console for every request that comes

into the server. You would use something like the code in Listing 12-1 and log the

request information in that middleware. There really is very little to app.use. It’s

just a way to register a middleware function that runs on every request, regardless

of the HTTP verb or URI.

app.use(function (req, res, next) {
 console.log(req.method + ' ' + req.url);
 next();
});

Listing 12-1. A simple request logger

The additional logic exposed by app.use is the optional first argument known as a

mount path. It defaults to / if no path argument is specifically provided. Suppose

Full Stack JavaScript Development with MEAN154

we only wanted to log requests for the API segment of our web server. We could

change Listing 12-1 to use a mount point:

app.use('/api', function (req, res, next) {
 console.log('/api logger');
 console.log(req.method + ' ' + req.url);
 next();
});

Listing 12-2. Logging API requests

As this is yet to be a complete example, don’t be alarmed if you receive 404 errors

when testing. They are more demonstrative of syntax and concepts rather than end-

to-end examples. By the end of this chapter, you will have built a funcional Express

server.

By adding /api to the argument list, we have changed the requests we want to log.

With Listing 12-2, only requests that start with /api will be logged. This is one way

to only run certain middleware for specific segments of the routing table. Suppose

you wanted to track the number of calls to /api resources clients are making. This

would be a great way to track just those specific /api requests.

cookieParser
So far, we’ve been writing all our own middleware functions. Remember, one of

the reasons to use a framework such as Express is for access to ready-made modules.

Our generated Express app comes with several of the most common Express mid-

dleware functions pre-installed. We're going to examine cookieParser in detail to

better understand how most community middleware functions are written. The

cookieParser middleware function essentially turns the “Cookie” header into a

usable JavaScript object.

The code for cookieParser can be found in node_modules/cookie-parser/index.js. The

first element you should notice is the signature of the exported function: it is a

function that returns a function. This is a very common pattern because it allows

options to be passed into the middleware function. In the cookieParser example,

we can pass secret and opt arguments.

By returning a function from another function, we’ve created a closure. In this ex-

ample, the cookieParser is returning an Express middleware function. The inner

155Architecture of an Express Application

cookieParser function has access to the original values of opt and secret passed

in the first time the outer cookieParser is called. For example, if we included the

cookieParser middleware like this: app.use(cookieParser('cookie-secret')),

every request will go through the cookieParser middleware. When this line of code

is executed the first time Express server is starting, cookieParser() will return a

middleware function. secrete will be cookie-secrete and the inner returned

function will have access to secrete.

The returned function has the signature function (req, res, next) {...}, just

like every other middleware function we’ve examined. This function also demon-

strates the concept of editing and attaching values to req and res and using those

values elsewhere. secret, cookies, and signedCookies will be attached to every

request (req) that executes this middleware function, and will be available to every

downstream middleware function. Finally, after all the logic, next is called to keep

the request moving through the server.

Feel free to examine other middleware functions being registered with app.use

such as bodyParser.json and bodyParser.urlencoded. You’ll find that they all

follow the same pattern.

Static Files Revisited
With app.use and the middleware pattern under our belts, we can revisit static file

serving and have a better explanation of how it works. Let’s examine the line in

app.js that sets up the static file server:

app.use(express.static(path.join(__dirname, 'public')));

Listing 12-3. Express default static file server

First we’re using app.use, which takes an optional mount point and a middleware

function. Since all our static content resides under public, we don’t need a mount

point in this case, and the default value of / is fine.

express.static is a function that takes a root argument, an optional options ar-

gument, and returns a middleware function; this is the same pattern we saw in

cookieParser. path is one of the core Node modules and it is used for path and

directory logic. Rather than simply passing 'public' to express.static, we’re going

to concatenate the current directory, which is available globally with __dirname,

Full Stack JavaScript Development with MEAN156

and 'public' for the complete path. It’s good practice to use path in this way to

help avoid any file system differences between distinct operating systems.

Finally, a middleware function is returned and registered with app.use that will

try to locate static files saved under the public directory. If they are found, it will

serve them. If they are not found, it will continue looking from top to bottom for a

matching route in the routing table.

Error Handling
Any time you pass a truthy value into next, you are alerting Express that there has

been an error. We mentioned this in the last chapter, but what does that really mean?

Switch back to app.js and you should see a function similar to Listing 12-3.

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
});

Listing 12-4. Express error handler

What makes this an error handler and not just a normal middleware function?

Technically, it is a middleware function because we’ve registered it via app.use,

but look at the function signature: err, req, res, next. This middleware function

expects an err argument as the first parameter whereas other middleware functions

expect a request object as the first parameter. The truthy value you pass into next

becomes the err value in the Express error handling function. In the default error

handling function, we are using res.render to render the error template and pass

information about the error into the view.

There are a few well established rules for dealing with errors in programming and

JavaScript is no exception. While any truthy value passed into next will get sent

to the error handler, you should make a habit of passing true Error objects rather

than strings. Error objects include the execution stack which can often be invaluable

in tracing error conditions. Simply passing "there was an error" into next won’t be

very helpful when your Express app is running in production.

157Architecture of an Express Application

If this were a production system, we would want to record the error into something

permanent like a database or a log file. We might also want to send out email alerts

or even restart the server depending on the error severity. The default error handler

is a good place to start and you should treat it as essentially a stub to fill out with

more robust error handling.

Error Handling in Practice
Let’s write a quick middleware function demonstrating how to hook into the Express

error-handling middleware and demonstrate a common pattern in Express servers.

We’ll reference some of the code we wrote back in Chapter 8. Let’s assume for this

example that we have an open connection to our MongoDB, and that we have

properly defined an Employee model. In this middleware function, we’re going to

look up an employee by their ID, which has been passed into the Express server via

a route parameter.

function retrieveEmployee (req, res, next) {
 Employee.findOne({
 _id: req.params.employeeId
 }).exec(function (error, employee) {
 if (error) {
 return next(error);
 }
 res.locals.employee = employee;
 return next();
 });
}

Listing 12-5. Using Express error handler

Let’s revisit the retrieveEmployee function from Chapter 8 and refactor it to be an

Express middleware function. In this version, we’re going to look up the employee

by the ID supplied in the route parameter named employeeId. If there’s an error

looking up the employee, such as the connection being closed or the database un-

reachable, error will be an Error object. That the employee is not in the database

isn't necessarily considered to be an error. If there is an error, we will call next and

pass error. Otherwise, we'll attach the resulting employee to res.locals, call next,

and continue the request life cycle.

Full Stack JavaScript Development with MEAN158

When you call next(error), the error handler will take over and the error-handling

logic will execute. When you do this, you generally do not want the remainder of

the route to execute because the code is in an unexpected error state. Calling next

with an error will short-circuit the currently running route and skip right to the error-

handling function; however, it is critical that you remember to call return

next(error). Simply calling next is not enough to stop executing the current

middleware function. Only return can stop function execution.

In Listing 12-4, if you omitted return from the return next(error) statement, you

would introduce a bug that’s difficult to track down. In the case where there was

an error, the error handler would execute and respond with the error page. After

that, execution would continue down the file, try to attach employee to res.loc-

als.employee, and then call next again. This would eventually lead to the server

trying to send a second response for a request that already had a response from the

error handler. It is good practice to always put return in front of a callback, just to

be sure.

app.set
app.set gives us a common place to read and write application-wide settings. For

example, running app.set('title', 'Express Server'); will assign the server

setting title to Express Server. You can get these values back using

app.get('title'). When rendering views, you can access the application settings

via settings.

Most of the settings are for the developers' use; however, Express does use this

mechanism internally to manage internal settings such as views, view engine,

jsonp callback name, and several others documented here.1

If you check out app.js again, you’ll notice that the example has set the view engine

to jade and the views to use the views directory. Internally, Express references these

values and treats them as configuration options. You’ll often see several app.set

calls near the top of a server file.

1 http://expressjs.com/4x/api.html#app-settings

159Architecture of an Express Application

http://expressjs.com/4x/api.html#app-settings

Router Object
You’ll notice in app.js that there are no route registrations via app.get. This is be-

cause the generated app takes advantage of the Router object.

The Router object is like a mini Express application that can only execute middle-

ware and perform routing. It lacks the other features the full Express application

has, and is a kind of middleware that can be required and used by the main Express

application.

In our previous examples when we registered a route with app.get, we were referring

to the built-in Router object that every Express application has attached to it.

The small Router objects allow developers to break route registration away from

app.js into one or more files. This drastically cleans up the main server file so that

it is solely initialization code and moves the bulk of the logic into modular files.

Using the Router Object
In app.js, you would have noticed app.use('/users', users);. If we look in

/routes/users.js, we’ll see a nice example of how to work with the Router object.

First, we receive a reference to the Router object via express.Router(); and from

there, it has the exact same interface that we’ve been working with when using app.

You can register routes and middleware, even include additional router.use

commands.

Two interesting points about users.js; first, we export the router at the end of the

file. Just as with any other Node object, we export items that we want to have access

to in other files. Second, the only route registered is GET /, which sends "respond

with a resource". But if you start the server and point a web browser to /, you’ll

see the Express landing page rather than "respond with a resource". So what’s

going on here?

If you flip back over to app.js, it should become clear. app.use('/users', users);

is setting up a mount point under /users and any route that starts with /users

should use the users middleware function. We exported the router from users.js

that had only a single route attached to it.

Full Stack JavaScript Development with MEAN160

If you make a request to /users, you should see "respond with a resource"

printed to the screen with no styling. When the GET request for /users comes into

the server, it will match on the /users mount point. /users will be stripped from

the path and become /. Execution will continue into the registered middleware.

The registered middleware is an Express router and has a single route set up for /,

so that is the code that will execute and send the desired response.

Being able to break route registration like this really helps in sharding responsibil-

ities across different endpoints. It also helps to cut down on changes to app.js, and

prevents teams from overwriting each other and creating code conflicts.

Exercise
To tie together everything we’ve covered in this chapter, let’s make the request to

/users actually send back some user data and the current time. Instead of just

sending back JSON, lets send some simple HTML as well. In the example code,

we’re going to simulate a database request again with setTimeout; however, if you’re

feeling ambitious, we encourage you to use some of the code from the MongoDB

chapters to communicate to your MongoDB instance.

For this example, we want to perform a few tasks:

1. Simulate database interaction to obtain a list of users (again, if you are feeling

ambitious go ahead and communicate to your MongoDB).

2. Take the results of the database interaction and generate a simple HTML document

with which to respond.

3. Add a reference to a local CSS file to illustrate using app.use(express.stat-

ic(path.join(__dirname, 'public')));.

Refer to Listing 12-6 for a complete solution.

Simulating Database Interaction
By now you should be very familiar with simulating database calls using setTimeout.

To keep our code readable, change the single route in routes/users.js to have two

middleware functions. Normally, we’d want to separate these calls into different

files and modules. For step 1, write a setTimeout function to simulate database

161Architecture of an Express Application

activity. Make sure that your code is set up to pass the array of users into the next

middleware function.

Generating the HTML
In the second middleware function, attach a timestamp to the result object. After

you have the timestamp, set a header named X-Special-Header to "MEAN Stack".

Lastly, send the response back to the client. You’ll find the complete answer in

Listing 12-6. Try to solve this without looking at the answer using what we’ve

covered in this chapter and the Express documentation.

routes/users.js

var express = require('express');
var router = express.Router();

/* GET users listing. */
router.get('/', function(req, res, next) {
 setTimeout(function() {
 res.locals.users = [{
 first: 'Abraham',
 last: 'Lincoln'
 }, {
 first: 'Andrew',
 last: 'Johnson'
 }, {
 first: 'Ulysses',
 last: 'Grant'
 }];
 return next();
 }, 1000)
}, function (req, res, next) {
 res.locals.time = Date.now();
 res.set({
 'X-Special-Header': 'MEAN Stack'
 });

 var view = '<!DOCTYPE html><html lang="en">'
 + '<head><link rel="stylesheet" href="/stylesheets/style.css")'
 + '<body><h1>User Output</h1><table>';
 for (var i = 0, length = res.locals.users.length; i < length; i++)
➥{
 var user = res.locals.users[i];
 view += '<tr><td>' + user.first + '</td><td>' + user.last +

Full Stack JavaScript Development with MEAN162

➥'</td></tr>';
 }

 view += '</table></body></html>';

 res.send(view);
});

module.exports = router;

Listing 12-6. User response

Listing 12-6 illustrates several of the Express principles that we’ve covered in the

last couple chapters. We’ve passed two different middleware functions into

router.get. In the first middleware function, we are simulating database access

with setTimeout. After one second, the callback will run and we'll attach three

users to res.locals.users. There are two points to keep in mind in this step; first,

we only want to call next when this step is done. If we called it outside of the

setTimeout function, execution would go to the next piece of middleware, sending

a response before it was truly ready. The second point is that we cannot pass data

to another function with next. Passing any truthy value into next will initiate the

error handler; instead, we must attach values to req and res to move data from one

middleware function to the next.

In the second middleware function, we use res.set to set the X-Special-Header

to "MEAN Stack". res.set is an Express method attached to res that enables de-

velopers to easily set headers in a response. Next, we build a string of HTML (stored

in view) that will be the response for this request. Notice the reference to

/stylesheets/style.css. This will engage the static file server set up with

app.use(express.static(path.join(__dirname, 'public'))) in app.js. Remember,

the parameter to express.static tells Express where to start looking for static files.

Next, we iterate over the list of users attached to res.locals.users employing a

simple for loop and fill the HTML table with information. Finally, we use

res.send(view) to end the request life cycle and send a response back to the client.

res.send has a few nice features that make sending responses with it much more

convenient than using the core http module. res.send will try to automatically set

the correct Content-Type based on the data being sent. It will also set the Content-

Length header as well.

163Architecture of an Express Application

If you open the developer tools in your preferred web browser and make a request

to the /user route, you can see all the headers that Express has set for us. Note that

the Content-Type and Content-Length have both been set automatically, as shown

in Figure 12.1. You should also see two requests—one for users and one for

style.css.

Figure 12.1. Network Inspector

Summary
In this chapter, we learned about more of the internal workings of an Express ap-

plication. As you can see, working with a Node framework is much easier and

maintainable than working directly with the http module. In just a few lines, we

built a nearly feature-complete web server without reaching down into the core

Node modules once.

Full Stack JavaScript Development with MEAN164

The Express routing logic is very expressive and allows developers to register routes

with both strings and regular expressions. Express also has a specific Router object

that is a slimmed down Express application, enabling developers to break apart

route registration into separate files to keep the main server file clean.

The functions in Express routes are called middleware and they all have the same

function signature. There are many middleware functions available in the open-

source community that solve many common web development problems, easily

plugging into Express servers.

In the next chapter, we’re going to continue building our human resources style

application and combine the three technologies we’ve covered to this point: Express,

Node, and MongoDB.

165Architecture of an Express Application

Chapter13
Using Express in Our App
This chapter revisits the example Human Resources application that was started in

Chapter 6 and continued in Chapter 9. Up to this point, we've created a Node ap-

plication that communicates with a MongoDB store. We used Node's http module

to write a custom implementation for a router. Now that we have the more powerful

Express router at our disposal, we're going to replace our http code.

If we were starting a new application from scratch, we would likely want to use a

scaffolding generator, such as Yeoman1 (which has a MEAN stack generator2);

however, since we're updating our existing application, we're going to modify

everything by hand.

Updates to package.json
The first step in our migration to Express is to update the package.json file. We need

to install Express and several pieces of middleware. We can install all the necessary

modules using the command in Listing 13-1:

1 http://yeoman.io/
2 http://meanjs.org/generator.html

http://yeoman.io/
http://meanjs.org/generator.html

npm install --save body-parser cookie-parser debug express morgan
➥serve-favicon

Listing 13-1. Installing Express and other required middleware

We can also remove the colors and array.prototype.find modules, which we

have no need for anymore. This can be done using the command shown in Listing

13-2:

npm remove --save colors array.prototype.find

Listing 13-2. Removing modules that are no longer required

We're also going to add a start entry to the scripts object. This will allow us to

easily start our server using the command npm start. Add the entry shown in

Listing 13-3. Note that this command depends on bin/www, which is yet to exist.

We'll be adding it very soon.

"start": "node ./bin/www"

Listing 13-3. Adding the start entry in the scripts object

The complete and updated package.json can be seen in Listing 13-4.

{
 "name": "example-server",
 "version": "0.1.0",
 "description": "HR application server.",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "start": "node ./bin/www",
 "populate": "node ./bin/populate_db"
 },
 "author": "Peter Pluck",
 "license": "ISC",
 "dependencies": {
 "async": "^0.9.0",
 "body-parser": "^1.6.7",
 "cookie-parser": "^1.3.2",
 "debug": "^2.0.0",

Full Stack JavaScript Development with MEAN168

 "express": "^4.8.7",
 "mongoose": "^3.8.15",
 "mongoose-post-find": "0.0.2",
 "morgan": "^1.2.3",
 "serve-favicon": "^2.1.1"
 }
}

Listing 13-4. The pdated package.json file

The npm start Script
The next step is to create a file named www in the project's bin directory. The contents

of www are shown in Listing 13-5. This code starts our server, which is defined in

the project's index.js file. The server listens on port 3000 by default, but that value

can be overwritten by setting an environment variable named PORT. For example,

if you wanted the server to listen on port 4000, use the command PORT=4000 npm

start.

var debug = require('debug')('example-server');
var app = require('../');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' + server.address().port);
});

Listing 13-5. The bin/www script

Notice that the debug module is used to display a message. By default, if you run

npm start, nothing will be displayed. To enable the debug message, set the process's

DEBUG environment variable to example-server.

Defining Routes
The next step is to create the Express routes that will process incoming requests.

Create a routes directory in the root of the project. This is where we'll place all our

route files. Inside the routes directory, create two files: employees.js and teams.js.

169Using Express in Our App

Employee Routes
The contents of routes/employees.js are shown in Listing 13-6. We are supporting

the following routes:

■ GET /employees ― returns all employees, sorted by last name

■ GET /employees/:employeeId ― returns information for a single employee,

whose employee ID is passed through the employeeId parameter

■ PUT /employees/:employeeId ― used to update an existing employee; the em-

ployee ID is passed through the employeeId parameter, while the employee data

is passed in the request body

var express = require('express');
var mongoose = require('mongoose');
var Employee = mongoose.model('Employee');
var Team = mongoose.model('Team');
var router = express.Router();

router.get('/employees', function(req, res, next) {
 Employee.find().sort('name.last').exec(function(error, results) {
 if (error) {
 return next(error);
 }

 // Respond with valid data
 res.json(results);
 });
});

router.get('/employees/:employeeId', function(req, res, next) {
 Employee.findOne({
 id: req.params.employeeId
 }).populate('team').exec(function (error, results) {
 if (error) {
 return next(error);
 }

 // If valid user was not found, send 404
 if (!results) {
 res.send(404);
 }

Full Stack JavaScript Development with MEAN170

 // Respond with valid data
 res.json(results);
 });
});

router.put('/employees/:employeeId', function (req, res, next) {
 // Remove this or mongoose will throw an error
 // because we would be trying to update the mongo ID
 delete req.body._id;
 req.body.team = req.body.team._id;

 Employee.update({
 id: req.params.employeeId
 }, req.body, function (err, numberAffected, response) {
 if (err) {
 return next(err);
 }

 res.send(200);
 });
});

module.exports = router;

Listing 13-6. The contents of routes/employees.js

Team Routes
The team routes are stored in routes/teams.js, whose contents are shown in Listing

13-7. The following team routes are supported:

■ GET /teams ― displays all the teams stored in the database, sorted by team name

■ GET /teams/:teamId— displays information regarding a single team; the team's

ID is passed through the teamId parameter, and must match the associated

MongoDB _id property

var express = require('express');
var mongoose = require('mongoose');
var Team = mongoose.model('Team');
var router = express.Router();

router.get('/teams', function (req, res, next) {

171Using Express in Our App

 Team.find().sort('name').exec(function (error, results) {
 if (error) {
 return next(error);
 }

 // Respond with valid data
 res.json(results);
 });
});

router.get('/teams/:teamId', function (req, res, next) {
 Team.findOne({
 _id: req.params.teamId
 }, function (error, results) {
 if (error) {
 return next(error);
 }

 res.json(results);
 });
});

module.exports = router;

Listing 13-7. The contents of routes/teams.js

Update index.js
The final step in our upgrade to Express is the conversion of the index.js file. The

modified contents of index.js are shown in Listing 13-8. There is a lot happening in

this file, so we'll explain it in smaller pieces.

Commonly Known as ...

The two most common names for the application's main file are index.js and app.js.

app.js is probably more common in Express applications, but the two are used

fairly interchangeably.

The file begins by importing Express, path, and some middleware. Next, we establish

a database connection, import the application's routes, and initialize the app variable.

Then we set up some of the middleware. Notice that the favicon middleware is

Full Stack JavaScript Development with MEAN172

commented out. This is because there is no favicon in our project. If your project

has one, uncomment this line.

The last five calls to app.use() are what really contains our application-specific

code. By use()ing the employees and teams variables, we're adding our routes to

the router. The next step is a call to app.use() that sets up a generic 404 route. This

is used to return a 404 on any requests not handled by our routes.

The final two app.use() calls are responsible for handling errors. You'll notice that

only one error handler is employed in development, where it's used to send back

additional error data. The final handler is utilized in non-development settings,

and only returns a status code.

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

require('./lib/connection');
var employees = require('./routes/employees');
var teams = require('./routes/teams');

var app = express();

// app.use(favicon(__dirname + '/public/favicon.ico'));
app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

// application routes
app.use(employees);
app.use(teams);

// catch 404 and forward to error handler
app.use(function(req, res, next) {
 var err = new Error('Not Found');

 err.status = 404;
 next(err);

173Using Express in Our App

});

// error handlers

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.send({
 message: err.message,
 error: err
 });
 });
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res, next) {
 res.status(err.status || 500);
});

module.exports = app;

Listing 13-8. The modified contents of index.js

Summary
This chapter has continued the development of our Human Resources example

application. In this chapter, we migrated from a custom http-based server to a more

flexible and scalable Express-based application. At this point, we have a fairly solid

back end for our HR application. Shortly, we'll be turning our attention to the front

end, which is built using AngularJS. First, however, we're going to take a whirlwind

tour of Hapi, an Express alternative developed at Walmart Labs.

Full Stack JavaScript Development with MEAN174

Chapter14
Alternative Server Frameworks
With a language as popular as JavaScript, there are bound to be differences in

opinion on how to solve any problem— from something as simple as loop optimiz-

ation to the more complex, such as the best way to simulate classical object-oriented

inheritance. The passion and drive to perform tasks the best way followed JavaScript

enthusiasts into the Node community, and is evident when looking at the available

web server frameworks. A few quick Google searches and you’ll see that the list of

available frameworks is quite large, while a search for “framework http” on npm1

nets you page after page of various web server frameworks. There are far too many

options to name here without doing any of them a disservice.

In this chapter we’re going to focus on hapi, an alternative to the Express framework.

We’ll look at hapi because it’s the second-most popular Node framework, and it’s

very different from Express.2

1 https://www.npmjs.org/search?q=framework%20http
2 Full disclosure: both authors are currently employed by Walmart and have contributed to hapi and

several of the modules it relies on.

https://www.npmjs.org/search?q=framework%20http

hapi Overview
The hapi server framework3 has an active and growing community, as well as many

big name supporters. At the time of writing, hapi is the second-most starred server

framework on the npm registry and is quickly becoming more popular. hapi’s ap-

proach is to be configuration-centric instead of development-centric. This allows

developers to focus more on business logic than the nuts and bolts of a web server

and an evergrowing list of middleware functions.

Just as Express’s list of users is impressive, so is hapi’s. Some of the big names

currently using hapi in production include OpenTable, PayPal, Beats Music, and

Walmart; you can check out the website for a full list of companies using hapi.4

Walmart has an extra incentive to see hapi succeed, as the main contributors built

hapi while working for Walmart’s research and development division.

hapi offers all the same high-level features that Express does. It has a robust routing

system, integration options for templating languages, and an easy-to-use static file

server. It also supports a solid plugin system and provides built-in input validation.

Express Comparison
There are numerous differences between Express and hapi. The main logical com-

ponent in Express is the middleware function. A route consists of a series of one or

more middleware functions, and eventually a function that sends a response to the

client. The majority of middleware logic that developers have to write in Express

are configuration options in hapi. A route in hapi consists of a path, an HTTP

method, and a single handler function. Everything else is handled via a configuration

object passed into the router.

Let’s revisit the code from Listing 12-6 and rewrite it using hapi in Listing 14-1:

var Hapi = require('hapi');
var server = new Hapi.Server('localhost', 3000);

server.route({
 method: 'GET',

3 http://hapijs.com/
4 http://hapijs.com/community

Full Stack JavaScript Development with MEAN176

http://hapijs.com/
http://hapijs.com/community

 path: '/users',
 config: {
 handler: function (request, reply) {
 var result = {};
 setTimeout(function () {
 result.users = [{
 first: 'Abraham',
 last: 'Lincoln'
 }, {
 first: 'Andrew',
 last: 'Johnson'
 }, {
 first: 'Ulysses',
 last: 'Grant'
 }];
 result.time = Date.now();

 return reply(result).header('X-Special-Header', 'MEAN
➥Stack');
 }, 3000);
 }
 }
});

server.start();

Listing 14-1. Example hapi route

In Listing 14-1, server is the hapi server object. To add a route, we execute the

route method and pass a series of options. method and path are used to set up the

matching rules for the router. The config option is where all the other configuration

for this route will reside. The handler function is what’s responsible for sending a

reply to the client. request is the incoming request and reply is a function that

sends a response. It is worth noting that the request object is not the built-in Node

request object. It is a hapi-specific request object. The Node request object is available

via request.raw.req.

What if we wanted to cache the response from Listing 14-1? With Express, a de-

veloper would have to write logic to set the proper headers instructing the browser

to cache the response. If you had several dozen routes with different cache require-

ments, you’d have to add a setCache-type middleware for each route. In hapi, the

cache headers are controlled via a setting defined with the route configuration.

177Alternative Server Frameworks

server.route({
 method: 'GET',
 path: '/users',
 config: {
 handler: function (request, reply) {
 //...
 }
 },
 cache: {
 expiresIn: 30000
 }
});

Listing 14-2. hapi cache headers

Route Configuration
The cache option exposes several methods for setting the "Cache-Control" header.

In Listing 14-2, we are setting the cache header to expire in 30,000 milliseconds.

Additionally, hapi will not set the cache headers if there’s an error. In Express,

there’d be a few lines of development required for removing the cache headers to

avoid caching error pages. Check out hapi's API site for a complete list of configur-

ation options.5 It can be a little overwhelming at first, but before trying to implement

any big functionality, review the documentation and you might find that all you

need is to add an additional configuration to the server or route.

As a second example, what if you wanted to validate the outgoing response before

sending it back to the client? Using Express, you would have to write additional

code to achieve this. With hapi, you can simply update the route configuration to

include response validation. In addition to the response, you can also validate the

incoming headers, the query string, and the route parameters. You might use a

simple function and write your own validation rules, or use another of the hapijs

modules: Joi.6

Joi is a stand-alone validation module that can been hooked right into any hapi

route configuration. It is a very powerful and expressive validation module that

5 http://hapijs.com/api
6 https://github.com/hapijs/joi

Full Stack JavaScript Development with MEAN178

http://hapijs.com/api
http://hapijs.com/api
https://github.com/hapijs/joi

pairs nicely with hapi, because any configuration that exposes validation accepts

a Joi configuration object as well as validation function. Here's an example:

var joi = require('joi');

server.route({
 method: 'GET',
 path: '/users',
 config: {
 handler: function (request, reply) {
 reply(request.query);
 },
 validate: {
 query: joi.object().keys({
 page: joi.number().integer().min(1).max(10),
 number: joi.number().integer().min(1).max(5)
 })
 }
 }
});

Listing 14-3. Joi example

In Listing 14-3, we are tapping into the validate option of the route config, and

setting validate.query to a Joi schema. By setting validate.query, hapi will val-

idate the query-string parameters before the handler is run. If the validation fails,

the server will respond with a 400 status code and an object representing the valid-

ation errors. Expressed in words, the Joi schema enforces that page is an integer

between one and ten. It also enforces that number is an integer between one and

five. Finally, joi.object().keys() prevents any extra values in the query string.

Only page and number will be allowed in this route. Joi is well beyond the scope of

this book, so we strongly encourage you to checkout Joi and validation on your own.

Routing
The order that routes are registered with Express is very important. The first one

that matches is the route that is executed. It is also possible to register the same

route multiple times. And finally, with Express you can match on pattern A, execute

some code, and if a response hasn’t been sent, match a second time on pattern B

before responding to the client.

179Alternative Server Frameworks

hapi uses a deterministic routing table. This means that the order in which routes

are registered has no influence on how they’re handled. The routes are sorted from

most specific to least specific as the routing table is created in the framework. hapi

will throw an error if developers try to register the same route multiple times. Ad-

ditionally, the router will only ever match one route and execute a single handler.

These route-handling differences essentially eliminate all the routing bugs sometimes

found in Express applications that are difficult to trace.

As a simple specificity example, suppose we had two routes with paths "/file.txt"

and "/file.{ext}". Between those two paths, "/file.txt" is more specific because

it has no parameters, so a request for "/file.txt" would match the first route and

that handler would be used. "/file.txt" would match both paths, but the more

specific would be the winner in this example and that handler would run.

Built-in Capability
Express is billed as being thin and unopinionated and, for the most part, that’s true.

You can wire in almost any module into the Express ecosystem and build a feature-

complete web server. Building items such as server-side caching or user authentic-

ation into an Express server requires several modules often written by different

developers, communicating perfectly and staying in sync. Indeed, many Express

applications do this successfully.

hapi, by contrast, has these features out of the box. hapi has a server-side cache

engine that can be used to store values in memory, or in a redis or MongoDB instance.

If your server requires authentication, there are configuration options for that as

well. All a developer needs to do is configure the authentication for the specific

routes that require it. If basic authentication is not enough, or if you want to use

social logins, there are several hapi plugins that add more flexible user authentica-

tion. The majority of those plugins require no development, just additional config-

urations and plugin modules. We’ll talk more about plugins shortly in this chapter.

Events
One of the common praises of hapi is that it is “Node-like.” Besides supporting

pipes and streams natively, there are many server events that developers can hook

into. The main server object inherits from Events.EventEmitter. Because it uses

a core Node object, we already know how to interact with it.

Full Stack JavaScript Development with MEAN180

Suppose we wanted to log every response that the server sends. In Express, this

would require some development and middleware functions placed strategically

in the router. In hapi, we can listen for the response event and log information

about the response.

server.on('response', function (event) {
 console.log(event.info.received);
});

Listing 14-4. Logging server events

Listing 14-4 easily allows us to execute logic after the hapi server has sent a response

to the client. There are several other events that can be listened for that provide

logging and performance benchmarking. These events aren’t used for control flow,

or to extend the functionality of the hapi server; they are just ways to observe differ-

ent events that the server emits.

Extension points, by contrast, provide structured hooks to extend and alter the

standard hapi request lifecycle.7 Suppose we wanted to write a log file to the file

system after authentication on a particular web resource occurred. In Express, you

would add another middleware function that would write the file and then execute

next. With hapi, you can use the onPostAuth extension point.

server.ext('onPostAuth', function (request, next) {
 require('fs').writeFile('log' + Date.now() + '.txt', 'Successful
➥authentication!', next);
});

Listing 14-5. onPostAuth extension point

Obviously this is a contrived example, but it demonstrates the concept of extension

points. This function writes a file after every onPostAuth event. The nice part about

using events rather than middleware functions is that the function only needs to

be written and declared once. There’s no need to go looking for the different places

that might use the equivalent Express middleware. In addition, as long as you’ve

properly set up the listener, this logic can reside in any file in the project because

it is event driven.

7 http://hapijs.com/api#request-lifecycle

181Alternative Server Frameworks

http://hapijs.com/api#request-lifecycle

Plugins
hapi has a robust plugin system. A plugin can be thought of as a bundled subset of

server functionality. A plugin can add new routes and additional events, and provide

support for higher-order languages such as Stylus and Less CSS—almost anything

a completely new server can do. The plugin architecture is one reason why hapi is

so attractive.

Plugine allow a server to have its logic segmented across many different modules.

Let’s expand on that with an example. Suppose you are working with a team that

is building a new web server. You want to expose data such as an API that a

smartphone phone can consume for native apps, but you also want to serve a website.

Working with Express, this could be complicated.

The API team would want routes set up one way and the front-end developers would

want them set up another. The front-end team would want to add middleware

functions for compiling templates and serving static assets, something for which

the API has no need. Juggling the needs and designs of two teams both working on

the same server would be trying, as well as require great coordination.

With hapi, each team would work from a distinct hapi plugin, and the single server

would then load both plugins. This would allow each piece of code to be completely

isolated from each other and have very little coupling. Each plugin can register its

own routes, listen for events, have its own cookie-managed state, and have its own

list of other plugins as dependencies. Covering all of what plugins can do is outside

the scope of this book, but the full documentation can provide better insight to

working with plugins.8

Plugin Example
Let’s expand Listing 14-1 by adding a plugin module that will display the JSON on

a web page. We’ll avoid using any templating languages to keep the example simple,

and construct the HTML by hand, sending the response back to the client.

//...original code from Listing 14-1 omitted
var plug = {
 register: function (plugin, options, next) {

8 http://hapijs.com/api#plugin-interface

Full Stack JavaScript Development with MEAN182

http://hapijs.com/api#plugin-interface
http://hapijs.com/api#plugin-interface

 plugin.route({
 method: 'GET',
 path: options.prefix + '/view',
 config: {
 handler: function (request, reply) {
 request.server.inject({
 url: '/users'
 }, function (res) {
 var users = res.result.users;
 var view = '<!DOCTYPE html><html lang="en"><body><h1>
➥User Output</h1><table>';

 for (var i = 0; i < users.length; i++) {
 var user = users[i];
 view += '<tr><td>' + user.first + '</td><td>' +
➥user.last + '</td></tr>';
 }

 view += '</table></body></html>';
 reply(view);
 });
 }
 }
 });

 next();
 }
};
plug.register.attributes = {
 name: 'viewer',
 version: '1.0.0'
};

server.pack.register({
 plugin: plug,
 options: {
 prefix: '/users'
 }
}, function (err) {
 if (err) {
 console.log(err);
 } else {

183Alternative Server Frameworks

 server.start();
 }
});

Listing 14-6. Plugin example

This looks a little overwhelming at first, but let’s walk through it. We’re creating a

plug variable that has a register function with attributes attached to the register

function. attributes must have a name and version key. Those few items are

everything a JavaScript object needs to be considered a plugin. The register

function is the main entry point into the object and is where the majority of the logic

will be located. The register accepts three arguments: plugin, options, and next.

plugin is the plugin interface and has many of the same methods available to the

server object, including route. The options object is where any plugin-specific

options will reside; in this case, we’ve supplied a prefix value that we used to set

the path value for the route registration. next is the callback function the method

must call to return control over to the application and complete the registration

process.

In the handler, we use server.inject. The inject method simulates an HTTP re-

quest without actually making a socket connection. It’s useful for testing and, in

this case, requesting information from another route to obtain the list of users. After

we have the list of users available, we simply create an HTML string and respond

to the client with reply.

To register the plugin, we use server.pack.register. server.pack is too large a

concept to discuss in this book. In short, every server is grouped into a pack of

servers. This lets you register the same plugin and routes for multiple hapi servers

at once. It also allows developers to treat packs of servers as a single object, so that

they can start and stop a pack of servers in one step. For the full explanation of a

pack, please check the hapi documentation.9

If you start a web browser and navigate to "/users" and "/users/view", you should

see the different response. This plugin lets us separate two routes and serve a view

from one and JSON from the other. Ideally, the plugin would be in another file to

help keep the main server logic clean. Using plugins such as this allows for far

9 http://hapijs.com/api#hapipack

Full Stack JavaScript Development with MEAN184

http://hapijs.com/api#hapipack

greater code modularity and reuse. There are several pre-built plugins for tasks such

as logging, API documentation, and working with user agents.

Summary
That was a whirlwind tour of some of what hapi has to offer. It is a completely dif-

ferent approach to building servers compared to Express, which makes it interesting

to learn. Many of the elements feature-complete web servers need are built right

into hapi. If it’s not built in, there are freely available plugins to fill in the majority

of missing features. The routing logic in hapi is unique because order does not

matter. hapi also uses events to provide extension points to expand and change the

server behavior.

Whether you use hapi or Express, I trust that after these few chapters, you’ll under-

stand why most people avoid trying to build all these features using only core

modules, instead investing time to learn a framework.

185Alternative Server Frameworks

Chapter15
AngularJS Overview
The final MEAN technology that we’re going to explore is AngularJS. Angular is a

front-end framework used for creating single-page applications (SPAs). Like the

other MEAN technologies, Angular is open source and can be used freely in your

applications.

Angular was created in 2009 by Miško Hevery and Adam Abrons at a company

named Brat Tech LLC. Angular was initially intended to be part of an online JSON

storage service, but this concept was abandoned and Angular was released to the

open-source world. Adam Abrons has since left the project, but Hevery continues

work on the project. Hevery became employed by Google, which is now closely

associated with Angular.

Single-page Applications
Single-page applications represent the latest evolution in web design. The idea

behind SPAs is that all the necessary code can be retrieved in a single page load or

dynamically loaded as necessary. As the user interacts with the application, data

is sent to and received from the server using Ajax requests. This provides a more

fluid user experience than page reloads, and is closer to resembling a native applic-

ation. Some of the common characteristics of SPAs will now be explored:

■ Ajax: Ajax requests are a necessity in SPAs. By definition, SPAs should experi-

ence a single-page load. All other requests should occur via Ajax or some other

real-time communication mechanism such as WebSockets.

■ Templating: it’s considered bad practice to mix HTML into the JSON data re-

turned by the server, hence why templating languages are often used in SPAs.

These languages, which are often implemented in JavaScript, are able to convert

JSON data into HTML strings that can be injected into the DOM.

■ Routing: client-side routing is similar to server-side routing that you learned

about in the chapter on Express. Routing allows you to select a piece of the ap-

plication to display without requiring a page load. In SPAs, it is common for

client-side routes to be specified in the URL’s fragment identifier, which is the

part that follows a hash symbol. For example, in the URL http://do-

main.com/#/team, the client-side router would deal with the /team section that

follows the #.

As mentioned, the biggest advantages of SPAs are improved performance and a

more fluid user experience due to reduced page loads and smaller server transactions.

However, SPAs also have drawbacks, the two biggest of which are the nature of

browser history and search engine optimization (SEO). Browser history can be

problematic because the Back and Forward buttons are based on page loads. Luckily,

using URL fragment identifiers maintains the expected behavior, as long as the ap-

plication can recreate the page based on the identifier.

SPAs can be tricky for search engines because they have not historically executed

JavaScript code during the crawling process. Search engines are beginning to catch

up, though; Google has begun to crawl pages with fragment identifiers by executing

JavaScript. There are other techniques that can be implemented as well. One common

example is detecting on the server side when a page is requested by a search engine,

and then using a headless browser (a browser without a GUI) to render the page and

send back a “normal” page. Care must be exercised in this situation, as it is slower,

and search engines typically incorporate page load time into their rankings.

Full Stack JavaScript Development with MEAN188

SPA Frameworks
There are a number of popular frameworks used for creating SPAs, each with differ-

ent pros and cons. And, as with many aspects of technology, users tend to be very

passionate about their framework of choice. This books focuses on Angular as it is

traditionally part of the MEAN stack, but that’s not to say we want to detract from

the alternatives. We suggest that you check out each framework to evaluate its

strengths and weaknesses,1 and see who is using it. For example, for a listing of

products designed with Angular, check out builtwith.angularjs.org.2

Here’s a selection of popular competitors to Angular:

■ Backbone.js3 is a veteran front-end framework, battle-tested and likely to be the

most used SPA framework. It is simple, flexible, and provides many small

building blocks with which to work. Unfortunately, Backbone’s simplicity often

requires its users to write a substantial amount of code to fill in the missing

pieces.

■ Ember.js4 is an extremely opinionated framework. It often only supports one

way of solving a problem, known as “the Ember Way.” This can be seen as a

strength and a weakness of the framework, depending on your point of view.

The Ember home page contains an impressive list of framework users5.

■ Polymer6 is another Google offering that focuses on Web Components,7 an up-

and-coming collection of technologies that provide web developers with the

ability to create customer HTML elements. Unfortunately, these technologies

are yet to be considered production-ready, leaving Polymer in the position of a

polyfill. Nevertheless, there is still interesting work going on in the area of Web

Component-based SPAs.8

1 http://blog.andyet.com/2014/08/13/opinionated-rundown-of-js-frameworks
2 https://builtwith.angularjs.org/
3 http://backbonejs.org/
4 http://emberjs.com/
5 http://emberjs.com/ember-users/
6 https://www.polymer-project.org/
7 http://webcomponents.org/
8 https://www.polymer-project.org/articles/spa.html

189AngularJS Overview

http://blog.andyet.com/2014/08/13/opinionated-rundown-of-js-frameworks
https://builtwith.angularjs.org/
http://backbonejs.org/
http://emberjs.com/
http://emberjs.com/ember-users/
https://www.polymer-project.org/
http://webcomponents.org/
https://www.polymer-project.org/articles/spa.html
https://www.polymer-project.org/articles/spa.html

So, how does Angular stack up in comparison with these competitors? It is con-

sidered one of the simpler frameworks to learn, and has a large community and core

team lead by Google. You can accomplish a lot with Angular just by writing some

custom HTML. One commonly noted drawback, though, is that it does too much

for you, without you having an understanding of what’s really happening. Addition-

ally, there seems to be no evidence of it being used in any of Google’s flagship

products, and the upcoming Angular 2.0 is expected to have no simple upgrade

path, meaning that full application rewrites could be on the horizon.9

Model-View-Controller Architecture
Angular brings the Model-View-Controller (MVC) architecture to front-end web

applications. Under the MVC approach, the model defines the application at a data

layer, independent of the user interface. In Angular, models are as simple as plain

JavaScript objects. The view is a visual representation of the model data. Angular

allows you to use HTML, in conjunction with extensions known as directives, as a

templating language for view creation. The controller component is responsible for

manipulating the model’s data. In Angular applications, controllers are JavaScript

functions that are registered with the application using the controller() method.

Figure 15.1 illustrates how a generic MVC process works. Note that this image is

not specific to Angular.

9 http://developer.telerik.com/featured/can-angularjs-maintain-dominance/

Full Stack JavaScript Development with MEAN190

http://developer.telerik.com/featured/can-angularjs-maintain-dominance/

Figure 15.1. A generic MVC process10

One of Angular’s most well-known features is its two-way data binding between

models and views. This greatly simplifies the problem of keeping data synchronized

between two application components. Two-way data binding means that when the

user updates the view, the model data is automatically updated to reflect the changes.

Similarly, if the controller modifies the model, the view is updated as well.

10 Image courtesy of Regis Frey via Wikimedia Commons.

191AngularJS Overview

Getting Angular
To include Angular in your application, use a <script> tag as shown in Listing 15-

1. This tag imports a minified version of Angular 1.2.23 from Google. You can also

download a nonminified version by omitting .min from the URL. The minified

version should always be used in production as the nonminified code is several

times larger, leading to increased download times and therefore greater page load

latency.

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.23/
➥angular.min.js">
</script>

Listing 15-1. Example <script> tag that imports Angular

Notice that no protocol is specified on the library’s URL. Google will serve the An-

gular library over HTTP or HTTPS. By not specifying a protocol, the browser will

load the library with whatever protocol is being used on your page. This prevents

potential mixed content11 errors and warnings from occurring when your page uses

one protocol and Angular loads using another. One caveat is that this style will fail

to work when running code locally without a server (over the file:// protocol). If

you are not running your code on a server and encounter a “file not found” error,

try adding http or https to the front of the URL.

Building from Source
The Angular project is maintained on GitHub in the angular/angular.js repo.12 If

you are so inclined, you can contribute to the project by submitting a pull request

to this repo; however, be warned that setting up an Angular development environ-

ment requires Java, Grunt (a task runner), and Bower (a client-side package manager),

in addition to git and Node.

After installing all the prerequisite software,13 you can build Angular using the

series of commands shown in Listing 15-2. The first command clones the repo from

GitHub. Alternatively, you may want to fork the repo first, then clone your fork and

11 https://developer.mozilla.org/en-US/docs/Security/MixedContent
12 https://github.com/angular/angular.js
13 https://docs.angularjs.org/misc/contribute

Full Stack JavaScript Development with MEAN192

https://developer.mozilla.org/en-US/docs/Security/MixedContent
https://github.com/angular/angular.js
https://docs.angularjs.org/misc/contribute

add the official repo as a remote. The npm install and bower install commands

are used to install all dependencies. The final command, grunt package, is used

to build Angular.

git clone "git@github.com:angular/angular.js.git"
cd angular.js
npm install
bower install
grunt package

Listing 15-2. Commands for cloning and building Angular

After running grunt package, the build output can be found in the build directory.

This directory should contain the following files and folders:

■ angular-<version>.zip ― the complete zip file, containing all the release build

artifacts

■ angular.js ― the nonminified Angular code

■ angular.min.js ― the minified Angular code

■ angular-scenario.js ― the Angular End2End test runner

■ docs ― a directory containing all the files needed to run an Angular document-

ation site

■ docs/index.html ― the main documentation page

■ docs/docs-scenario.html ― the End2End test runner for the documentation

application

Releases
Unlike the npm ecosystem, Angular does not adhere to semantic versioning. In

Angular, breaking changes occur between minor releases. It tries to avoid breaking

changes, but this is not always possible; for example, when potential security issues

are discovered. For instructions on upgrading to specific versions and details on

breaking changes, see the migration documentation.14

14 https://docs.angularjs.org/guide/migration

193AngularJS Overview

https://docs.angularjs.org/guide/migration

One interesting aspect of the Angular ecosystem is its naming convention for new

releases. Release code names are formed by two seemingly random words that are

joined with a hyphen. Example release names are finicky-pleasure, timely-delivery,

increase-gravatas, and temporal-domination, which correspond to versions 1.2.22,

1.2.0, 1.1.0, and 1.0.0 respectively.

As a front-end framework, Angular has to deal with issues such as legacy browsers.

The term legacy browser essentially translates to Internet Explorer 6, 7, and 8.

Currently, Angular’s Travis CI server is configured to run tests against IE9, 10, and

11. Angular dropped support for IE6 and 7 as from version 1.2. Angular 1.3 and

later drops support for IE8.

Angular "Hello World"
Listing 15-3 shows a simple Angular application that utilizes data binding. This

page contains an <input> element whose ng-model attribute is set to "example".

ng-model is an example of an Angular directive. Angular directives, the subject of

Chapter 17, are extensions to HTML syntax defined in an Angular application (or

the Angular core library). This directive signifies that this input’s value is bound

to the model’s example property.

Next, notice the <div> element whose content is {{example}}. In an Angular applic-

ation, HTML can be used for templating. The double opening and closing curly

braces are used to bind JavaScript expressions; hence, this example binds the value

of the <input> element to the contents of the <div> element.

The only task left to figure out is how a page is defined as an Angular application.

Notice the ng-app directive on the <html> element. This directive marks the <html>

element and its children as an Angular app. In this case, the app is fittingly named

"app".

Finally, notice the two <script> tags near the end of the <body>. The first script

imports the Angular codebase, while the second script defines an Angular module

based on our HTML using the angular.module() method. The first argument to

module() is the name of the module, and must match the value of an ng-app direct-

ive. The second argument to module() is an array of modules that the current

module imports. In this case, our simple module does not have any dependencies.

module() returns the newly created module. Note that, ideally, the JavaScript code

Full Stack JavaScript Development with MEAN194

would be separated out into another file. For the purposes of this basic example, it

has been left in the HTML.

<!DOCTYPE html>
<html lang="en" ng-app="app" class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>Data Binding Example</title>
 </head>
 <body>
 <input ng-model="example" />
 <div>
 {{example}}
 </div>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.23/
➥angular.min.js">
 </script>
 <script>
 'use strict';
 var app = angular.module('app', []);
 </script>
 </body>
</html>

Listing 15-3. An example Angular application that utilizes data binding

An example of our application in action is shown in Figure 15.2. In this example,

the text “Wow such binding!” has been entered in the text box. At the same time,

the contents of the <div> are updated. This feature is much more impressive to

watch in real time, so we encourage you to implement this example on your own.

Figure 15.2. Data binding in action

Of course, this is a trivial example. It does not define any controllers, custom direct-

ives, routes, or anything else commonly used in Angular applications. These features

will be explored in more detail in the coming chapters.

195AngularJS Overview

Summary
This chapter has introduced the AngularJS ecosystem, as well as some of the related

topics, such as MVC architectures and single-page applications. It has shown you

how to add Angular to a web page, as well as build it from source. In the next few

chapters, we’ll continue our dive into Angular by exploring the concepts of data

binding, directives, controllers, and routing in detail. After we’ve thoroughly ex-

plored the Angular framework, we’ll add a front end to our example Human Re-

sources application.

Full Stack JavaScript Development with MEAN196

Chapter16
Data Binding
In programming, data binding is the automatic synchronization of data is between

a program’s data layer and the associated view layer. Think back to some of the

database code in this book. We would execute a query in the database, collect the

result in a variable, and then send the JSON to the requesting client. If we take this

one more logical step, that JSON would be used by the display layer to show the

database results to the user. This can be thought of as one-way data binding; the

data from the database is bound to the view we display to the user. For our purposes,

our application is going to be a web page and the view is going to be HTML.

One of the marquee features of Angular is the built-in two-way data binding system.

This allows Angular developers to create rich, interactive web applications with

very little UI code. (In fact, later on in the chapter, Listing 16-1 will provide a non-

trivial interface with zero JavaScript.) In this chapter, we’re going to discuss one-

and two-way data binding, and walk through some Angular code examples to

demonstrate leveraging this powerful feature.

One-Way Data Binding
One-way data binding is useful in specific applications. Suppose you had a web

page that was an online storefront. The HTML would only require the data from

the database once before displaying the page. After the initial load, the user is unable

to interact or change the data in the database, only observe it through the HTML.

One-way data binding is much easier to implement and requires less code complex-

ity. Most one-way data binding can be achieved without any support from a

framework; however, most applications accept input from users and the view layer

needs to update based on users’ interactions.

There are several limitations to one-way data binding. Once the data is loaded and

the view rendered, the view is static. Even if the model changes five minutes

later—via an Ajax call, for example—the view won’t automatically update. The

developer would have to reset the data model, clear the HTML representing the

data, and recreate the changed parts of the DOM to update the view. This might

sound like minimal work for a very small web application, but once there are mul-

tiple pages with different user controls and input mechanisms, managing those data

changes by hand can quickly spiral into a maintenance and debugging nightmare.

So far, we have only been focusing on data moving in one direction, from the server

to the view. Just as often, data needs to move from the user back to the server, and

keep the view up to date during data flow. Suppose you were using a simple to-do

web application. When you add a new task, you expect both the view and the

database on the server to update. With one-way data binding, all of those updates

are up to the developer to make happen. The workflow would go like this:

1. The user would fill out a small form to add a new task and press an Add button.

2. The JavaScript array in the memory would be updated to include the new object.

3. The view would need to be updated to include the new item in the array.

4. The JavaScript object would be sent to the web server to update the database.

The developer would be responsible for keeping data flowing correctly through this

workflow and handling any errors that might occur. So far, we’ve only been focusing

on adding, but what about deleting? That would be even harder because there needs

to be an artificially created relationship between the view and underlying object

Full Stack JavaScript Development with MEAN198

model. Remember, HTML is just a string; it has no knowledge about the in-memory

JavaScript objects to which it is bound.

To achieve this level of interactivity, developers must rely heavily on DOM events

and DOM manipulation. Back to our storefront example, what if the user wanted

to change the currencydisplay from USD to EUR? There would need to be an event

listener for the change event on the drop-down. There also needs to be some edge-

case conditional logic for the first time the page loaded. This has led to the com-

munity term “jQuery spaghetti” code. It's used when many event handlers and DOM

manipulations have to be written by hand using jQuery to create a responsive user

interface.

Ideally, web developers would have access to a framework that lets them operate

on native JavaScript objects with the view automatically updating as the model

changes. In addition, changes to the view would also make updates to the object to

which it is bound. Then developers could focus on writing business logic and ex-

cellent user interfaces. Two-way data binding empowers web developers to do ex-

actly that.

Two-Way Data Binding
Two-way data binding solves the data model and view syncing problem. It allows

the developer to manipulate the bound data directly and not be concerned with

keeping the DOM in sync. For example, suppose you had a sign-up form with two

inputs for first and last name. With two-way data binding, as the user enters inform-

ation, the underlying data model stays in sync with the view. There’s no need for

any onChange or onKeyUp events to keep the data layer in sync with the view.

Suppose that one of the requirements for the user screen was a "full name" display,

with first name and last name concatenated together. With two-way data binding,

the developer can bind the result of firstName + lastName to a span tag. The focus

can then solely be on building that computed value without having to worry about

keeping the DOM up to date if either of the name parts change.

As stated, one of the main features of Angular is two-way data binding. It provides

a framework to bind simple and complex values, collections, functions, and Angular

expressions. It also comes with many built-in functions that can be combined with

bound values to control data display, which is useful for locale-aware formatting.

199Data Binding

A Simple Example
The best way to demonstrate the usefulness of two-way data binding is with an ex-

ample. Listing 16-1 is a simple sign-up form that hooks into the Angular data

binding system.

<!DOCTYPE html>
<html lang="en" ng-app>
 <body>
 <input type="text" ng-model="firstName" placeholder="first name"
➥>
 <input type="text" ng-model="lastName" placeholder="last name">
 <h2>Gender {{gender}}</h2>
 <input type="radio" ng-model="gender" value="male"
➥ng-click="style={color:'yellow'}">Male
 <input type="radio" ng-model="gender" value="female"
➥ng-click="style={color:'orange'}">Female

 <h2 ng-style=style>Welcome {{firstName + ' ' + lastName}}</h2>
 <button ng-disabled="!(firstName.length && lastName.length)"
➥ng-click="signup()">Sign Up</button>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.16/
➥angular.js"></script>
 </body>
</html>

Listing 16-1. Simple Angular data binding

This small amount of HTML gives us a remarkable amount of functionality, and

we’re yet to write any JavaScript. What you should first notice is that this is just

regular HTML. Angular does not introduce a new markup language or foreign syntax

to memorize—just plain HTML with attributes. Let’s examine the markup line by

line and explain how to use some of these HTML attributes.

The Meaning of ng

In Angular applications, you’ll see attributes or tags that start with "ng". This alerts

you to the attribute or tag being Angular-specific, and will let you look up the

documentation on the Angular website.

Full Stack JavaScript Development with MEAN200

Markup Explanation
The first feature you should notice is the ng-app attribute on the html tag. This at-

tribute is particularly important, yet often overlooked. You only ever need this once

for the whole Angular application. The ng-app attribute is used to instruct Angular

that the html element is the root element for this application. In general, you’ll see

this attribute on the html or body tags. If you forget to useit, none of the Angular

code will execute.

The two text box inputs have ng-model attributes attached to them. ng-model is the

specific keyword that establishes the two-way data binding used throughout Angular.

The ng-model attribute instructs Angular to bind to the value in the available scope

named firstName and lastName.

Throughout the markup, you can see values referenced with {someValue}. This is

how you display/use the data-bound values. If you interact with the view, you’ll

see the h2 elements dynamically update as firstName, lastName, and gender change.

Notice how even though gender is bound to a radio button list, the binding still

works correctly. The bound value is correctly updated when you toggle the various

radio options.

Another new concept is the ng-click directive. This is one way to attach click

events to DOM nodes using Angular. You’ll notice, though, that the value of ng-

click isn’t true JavaScript; it’s what is known as an Angular expression.1 An Angular

expression is a JavaScript-like code snippet with a few important differences. First,

the context used in an Angular expression is a scope object, rather than the global

window object. Second, developers can enjoy more defensive handling when working

with values that may be null or undefined. Last of all, expressions lack any notion

of control flow. Many of the Angular attributes can be set to expressions as well as

values, so it’s worth understanding how to use them.

When clicking on each of the radio buttons, we’re setting the style value based on

the selection. The style value is used with the ng-stlye directive to control how

the h2 name tag is displayed. This is a simple demonstration on how setting different

values can control the view layer. A second feature used in the h2 name tag displays

the result of an Angular expression. Using an expression, we can show the computed

1 https://docs.angularjs.org/guide/expression

201Data Binding

https://docs.angularjs.org/guide/expression

result of firstName plus lastName without any additional logic to keep the display

in sync when either value changes.

Finally, we use one more Angular directive on the button tag: ng-disabled. This

directive toggles the enabled state of the element based on an expression. In this

example, the button stays disabled until the user has entered a first and last name.

We also have another ng-click attribute set to signup(). This presently does

nothing, but we’ll leave it in for the next example later in the chapter.

Summary
Reviewing Listing 16-1 should illustrate a few critical points about two-way data

binding with Angular. We were able to achieve a high degree of front-end polish

without writing any JavaScript (yet). To achieve this level of responsiveness using

only jQuery or vanilla JavaScript would be a significant effort. There would need

to be several event handlers created to respond to the text and radio button changes,

another few lines of code to manage the color changes of the h2 tags, and one or

two functions for toggling the enabled state of the submit button. Two-way data

binding lets us focus more on data and data interactions, instead of ensuring that

the DOM is in sync with our data layer.

Technical Overview
Let’s go a little deeper into exactly how data binding works in Angular. Fundament-

ally, data binding consists of functions associated with a scope object (also called

an Angular context). A scope object is a JavaScript object created with an Angular

constructor that is used as the model for HTML markup. In a complete Angular

application, the scope object is instantiated via a controller and made available to

the view, but in Listing 16-1 we are using the global scope that is automatically

created by the framework. The rules governing scope objects work similarly to native

JavaScript scope rules. For example, if a page has several nested Angular scope

objects, the inner object can see and access the outer scope object that contains it.

$watch
Any time you bind data to the UI, Angular automatically creates a new $watch entry

in what is known as the $watch list. Think of a $watch as a very small event emitter

that can send and receive events when the underlying data model or UI changes.

Full Stack JavaScript Development with MEAN202

There is one $watch entry automatically created for every property that’s bound in

the UI. The $watch value and $watch list are used in the next topic, the digest loop.

Digest Loop
Any time there is a browser event (click, change, key press) that should be handled

by the related Angular context, the digest loop will run. This means that the loop

will run many, many times. When a user enters a single A into the firstName input

box, the digest loop runs. The digest loop is relatively simple in its functionality.

It iterates over every item in the $watch list and goes through a few simple steps.

First, it interrogates the object for the current value. Then it asks the value if it has

changed since the last time the digest loop ran. If any of the $watch items report a

change, another digest loop is run. The loop continues to run until none of the

$watch items report a change. At this point, the DOM is updated with all of the

changes to the object layer.

When talking about the digest loop, it’s important to remember that JavaScript is

single-threaded. So when the digest loop starts, Angular has control of the thread,

which means that during the loop user input is temporarily blocked. This explanation

of how two-way data binding works has been drastically simplified for the scope

of this book. Most of the time, there will be no need to understand the nuts and

bolts of how data binding works, only how to use it.

Simple Controllers
Listing 16-1 demonstrates some of the power of two-way data binding using Angular;

however, no real application is built that way. Angular is an MVC framework at

heart and Listing 16-1 only really has a view. We are going to rewrite this example

and introduce some new concepts that will form some of the building blocks for

the rest of the Angular chapters.

In Listing 16-1, you’ll notice that no JavaScript was written. But suppose we wanted

the click button to make an Ajax request to a server. Currently, there is nowhere

for this code to go. That’s because Angular applications are supposed to have con-

trollers behind them.

For now, let’s keep the exact HTML as Listing 16-1 and add the JavaScript code

needed to make a functional controller:

203Data Binding

var app = angular.module('app', []);
app.controller('main', ['$scope', function($scope) {
 $scope.firstName = $scope.lastName = undefined;
 $scope.gender = 'female';
 $scope.style = {color:'orange'};

 $scope.signup = function () {
 var person = {
 first: $scope.firstName,
 last: $scope.lastName,
 gender: $scope.gender
 }
 console.log(person);
 };
}]);

Listing 16-2. A simple controller

Before trying to wire this JavaScript into the HTML in Listing 16-1, you’ll need to

make two tiny changes to the HTML. First, change ng-app to ng-app=app on the

html tag. This instructs Angular that the application we are building is named app,

and it needs to instantiate a new app object. The second HTML change is to add

ng-controller="main" to the body tag. This instructs Angular that all the elements

inside the body tag should use the main controller as their scope context. Now you

can copy the code in Listing 16-2 into the HTML file from Listing 16-1 and the ap-

plication should continue to function. You’ll know you have everything set up if

the default value of gender is “female” and information is logged to the console

when you click Sign Up.

Functionally, everything remains the same compared to Listing 16-1; however, by

adding in a controller, we now have more control over the scope object being used

inside the body tag. The data binding should still function exactly as it did in Listing

16-1. The $scope argument passed into the function is the context object for this

controller. When data and functions are bound to this controller, they have a refer-

ence to this $scope object. The next chapter will focus solely on working with

controllers, so don’t worry if you feel a little confused. For now, just know that it

creates a new Angular context instead of using the global one, and we have much

more control over how it functions. The controller also provides a place to write

our business logic.

Full Stack JavaScript Development with MEAN204

Data Binding with Lists
One of the best features of working with data binding is the relative ease in working

with lists. Listing 16-3 is a simple list viewer and editor:

<html lang="en" ng-app="app">
 <body ng-controller="main">
 <input type="text" ng-model="firstName" placeholder="first
➥name">
 <input type="text" ng-model="lastName" placeholder="first name">
 <button ng-disabled="!(firstName.length && lastName.length)"
➥ng-click="add()">Add</button>
 <table>
 <tr ng-repeat="p in presidents">
 <td>{{p.first}}</td>
 <td>{{p.last}}</td>
 <td><button ng-click="$parent.remove(p)">Remove</button>
➥</td>
 </tr>
 </table>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.16/
➥angular.js"></script>
 <script>
 var app = angular.module('app', []);
 app.controller('main', ['$scope', function($scope) {
 $scope.firstName = $scope.lastName = '';

 $scope.presidents = [{
 first: 'Abraham',
 last: 'Lincoln'
 }, {
 first: 'Andrew',
 last: 'Johnson'
 }, {
 first: 'Ulysses',
 last: 'Grant'
 }];

 $scope.add = function () {
 $scope.presidents.push({
 first: $scope.firstName,
 last: $scope.lastName
 });

205Data Binding

 $scope.firstName = $scope.lastName = '';
 };

 $scope.remove = function(president) {
 $scope.presidents.splice($scope.presidents.indexOf
➥(president), 1);
 }
 }]);
 </script>
 </body>
</html>

Listing 16-3. Data binding with lists example

Just like the controller in Listing 16-2, there is a $scope object passed into the con-

troller function. In this example, we once again attach firstName and lastName.

We also attach a list of presidents and two functions that will be used as event

handlers. Remember, the $scope object is used by the view to bind to the values

and functions in this controller’s context.

This example will display a table of presidents with buttons to delete them from

the list. The first new feature used is the ng-repeat directive. The HTML and all

the children inside of it will be repeated for every item in the presidents collection

of the Angular context, which is an array in our controller. There are a few other

tasks you can achieve with ng-repeat and we encourage you to read more about it

in the Angular documentation2.

Another new feature is $parent.remove. Remember, every DOM element inside the

the Angular application has a scope associated with it. Inside a ng-repeat directive,

the scope is the current item in the collection. In this example, it's an object with

a first and last name. The remove function is up one scope level on the main control-

ler. You'll recall that scopes are nested just like variables in standard JavaScript.

$parent is a pointer to the immediate parent scope, which is the main controller

object and has the remove function defined. We want to pass p, the current item in

the collection, into the remove function so that the event handler knows which object

to remove from the bound collection.

2 https://docs.angularjs.org/api/ng/directive/ngRepeat

Full Stack JavaScript Development with MEAN206

https://docs.angularjs.org/api/ng/directive/ngRepeat

The add event handler creates a new object with first and last keys and then adds

that object to the presidents collection. As soon as this happens, the $digest loop

starts up, notices that the presidents collection has changes, and redraws the new

items. This adds a single row to the DOM table. Removing items is just as easy as

adding. In the markup, we indicated that we wanted to pass the current item into

remove. Then we use some standard array methods to locate the item and then

splice is out of the array. This triggers another $digest loop, and the table is re-

drawn to match the contents of the array. If you want to play with a few more ex-

amples, try sorting the list of presidents and see how easy it is to keep the DOM in

sync with the sorting.

To duplicate this level of functionality using only JavaScript and jQuery would re-

quire many more lines of code, and would be very brittle. Adding sorting, for ex-

ample, would be a nontrivial change. The developer would have to either sort the

data layer and redraw the DOM by hand, or sort the DOM and update the data layer

by hand. Both of these approaches would be susceptible to bugs and quickly become

difficult to maintain. Using Angular's two-way data binding system, working with

lists is easy and adding new features is a piece of cake. Speaking of food, think of

how many lines of jQuery spaghetti code you can now replace in your own projects!

Summary
In this chapter, we scratched the surface of two-way data binding using Angular.

Working with the DOM and keeping it up to date with data can be a frustrating and

dull task. Using a framework that supports two-way data binding lets developers

focus on what they are good at: working with and manipulating data. The DOM just

comes along for the ride, so to speak. Changes to the underlying object model

automatically update the bound DOM objects.

We gave a high-level overview of how data binding works in Angular by discussing

how the $digest loop iterates over all the $watch objects to determine what values

have changed since the last time the loop ran. Remember, because JavaScript is

single-threaded, the $digest loop phase takes control away from the browser and

blocks user input. After Angular determines what has changed in the context and

after refreshing the DOM, the browser regains control.

We created a more involved example of a very common use case: list management.

Our example demonstrated how to add and remove items to a list using a controller.

207Data Binding

Writing that same application without a data-driven framework would have been

a very tedious exercise. The list example, we trust, drove home the ability to operate

at the data layer, and the need tojust let the DOM update automatically without any

developer interaction.

We also introduced the concept of an Angular controller and explained why we

use them. They are the way to control the context of a specific part of the DOM,

rather than by using the global Angular context. As mentioned, a future chapter is

dedicated to controllers; we only gave a high-level overview of what was required

to make the example work.

Full Stack JavaScript Development with MEAN208

Chapter17
Angular Directives
This chapter continues our exploration of Angular’s core principles. Specifically,

this chapter focuses on directives, which are what allow Angular to extend HTML

syntax. Angular ships with a number of built-in directives, but developers can also

define custom directives to suit their application’s needs. This chapter will explain

how to use directives, as well as how you can create your own.

Overview
Let’s begin by defining exactly what is a directive. According to the official docu-

mentation:1

At a high level, directives are markers on a DOM element (such as

an attribute, element name, comment or CSS class) that tell Angu-

larJS’s HTML compiler ($compile) to attach a specified behavior to

that DOM element or even transform the DOM element and its

children.

1 https://docs.angularjs.org/guide/directive

https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/guide/directive

In other words, directives are additional pieces of markup that Angular interprets

to extend the default behavior of HTML. Directives can be specified as custom

HTML elements, attributes, classes, or comments. For example, given a fictional

directive named ngFoo, Listing 17-1 shows how it can be used as an element, attrib-

ute, class, and comment:

<ng-foo>Here is it used as an element</ng-foo>

<div ng-foo="Here is it used as an attribute"></div>

<div class="ng-foo">Here it is used as a class</div>

<!-- Here it is used as a comment -->
<!-- directive:ng-foo -->

Listing 17-1. An example directive used as an element, attribute, class, and comment.

There are a number of points to make about this example. First, our fictional directive

can be used as an element, attribute, class, or comment, but in reality, not all direct-

ives can be used in each way. For example, the ngRepeat directive, which is used

to loop items in a collection, can only be used as an attribute. This topic will be

covered in more detail later in the chapter. It’s also worth mentioning that best

practice dictates that directives should be used as elements and attributes while

avoiding classes and comments, which exist to support legacy applications.

The next point worth mentioning in Listing 17-1 is the way ngFoo is referenced in

HTML. By convention, Angular directives are named using camelCasing; however,

when used in HTML, directives are written in all lowercase letters with dashes used

to separate words. When Angular processes directives embedded in HTML, it nor-

malizes names using the following steps:

1. Strip x- and data- from the name.

2. Convert :, -, or _ delimited names to camel case.

This means that ngRepeat can be written as ng-repeat, x-ng-repeat, data-ng-re-

peat, ng:repeat, and ng_repeat. The simple dash-delimited form (ng-repeat) is

the preferred format, but the data- prefixed version is acceptable if you’re using

an HTML validation tool. The other versions should be avoided, and exist primarily

for legacy reasons.

Full Stack JavaScript Development with MEAN210

You’ll also notice that Angular prefixes its official directives with ng. When creating

custom directives, you should prefix your names as well; however, you should

avoid using ng, as it could potentially conflict with an Angular directive in the future.

For example, if you were writing a directive named match for a SitePoint product,

you might consider naming it spMatch.

An Example Using Common Directives
Next, we’re going to look at an Angular application, shown in Listing 17-2, containing

a few common directives. The first is ngApp,2 which is attached to the html element

as ng-app. ngApp is used to create a new Angular application, and should be attached

to the root element of the application. ngApp can only be used once per HTML

document. In this example, the Angular application is named app.

The next directive used in Listing 17-2 is ngController. As you’ve already learned,

Angular supports the MVC approach to application design. ngController allows

you to specify a controller for a specific section of an application. In Listing 17-2,

a controller named ExampleCtrl is attached to the body element. The functionality

of ExampleCtrl is found in the JavaScript near the bottom of the example. This

particular controller only adds a variable named people to the model (referred to

as $scope in the controller code).

<!DOCTYPE html>
<html lang="en" ng-app="app">
 <head>
 <meta charset="utf-8">
 <title>Angular Directives</title>
 </head>
 <body ng-controller="ExampleCtrl">
 <div ng-repeat="person in people">
 {{person.firstName}} {{person.lastName}}
 </div>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.25/
➥angular.js">
 </script>
 <script>
 'use strict';
 var app = angular.module('app', []);

2 https://docs.angularjs.org/api/ng/directive/ngApp

211Angular Directives

https://docs.angularjs.org/api/ng/directive/ngApp

 app.controller('ExampleCtrl', ['$scope', function($scope) {
 $scope.people = [
 {
 firstName: 'Colin',
 lastName: 'Ihrig'
 },
 {
 firstName: 'Adam',
 lastName: 'Bretz'
 }
];
 }]);
 </script>
 </body>
</html>

Listing 17-2. An example Angular application containing several directives

The final directive used in Listing 17-2 is ngRepeat. ngRepeat is used to iterate over

the elements of a collection. In this case, ng-repeat="person in people" loops

over all the members of the people in the model. During each iteration, the current

element is available via the person loop variable. In this example, we’re simply

displaying the first and last name of each person. The output of running Listing 17-

2 is shown in Figure 17.1. The bottom panel of the figure also shows how ngRepeat

expands people.

Figure 17.1. Directive example output and generated code

Full Stack JavaScript Development with MEAN212

Creating Directives
Angular ships with a number of useful built-in directives, but you will inevitably

come across a situation where you need to extend what Angular provides out of the

box. Luckily, Angular provides a convenient API for creating directives.

Directives are registered to individual modules using the directive() method.

directive() takes two arguments. The first argument is the normalized directive

name (myDirective as opposed to my-directive). The second argument to direct-

ive() is a factory function that returns an object telling Angular’s HTML compiler,

$compile, how the directive should behave.

The object returned by the factory function argument is known as a directive

definition object, and is a plain JavaScript object whose properties define the direct-

ive’s behavior. The following list explains some of the properties that can be used

by a directive definition object:

priority If multiple directives are defined on a single DOM element, prior-

ity can be used to specify the order in which they are compiled.

Directives with higher priority values are compiled first. The

compile order of directives with the same priority is undefined.

The default value is 0.

scope If this is set to true, a new scope will be created for the directive.

If scope is an object literal, a new isolate scope is created. Isolate

scopes do not inherit from the parent scope. This is useful when

creating reusable components that should not read or modify the

parent scope. The properties of an isolate scope object define the

local scope as derived from the parent scope. These values can be

defined in one of three ways:

■ @ or @attr ― Binds a local scope property to the value of a DOM

attribute. The result is always a string since DOM attributes are

strings. As an example, scope: {name: '@'} would bind the

name property to the name property in the parent scope. Simil-

arly, scope: {name: '@otherName'} would bind name to the

parent’s otherName property.

213Angular Directives

■ = or =attr ― Sets up bi-directional binding between a local

scope property and a parent scope property.

■ & or &attr ― Provides a way to execute an expression in the

context of the parent scope.

controller A controller constructor function.

transclude Compiles the content of the element and makes it available to the

directive. When true, transclude the content of the directive’s

element. When 'element', transclude the directive’s element, in-

cluding any directives on the element with a lower priority.

compile The compile() function is used to transform the template DOM,

although it is rarely used. The function takes two arguments,

tElement and tAttrs, and returns either a post-link function or an

object with function properties, pre and post. tElement is the

element where the directive has been declared. tAttrs is a normal-

ized list of attributes declared on the element.

link link() is a function responsible for registering DOM listeners as

well as updating the DOM. link() is only used if the compile()

function is not defined. This is where most directive logic resides.

link() takes five arguments:
■ scope ― the scope to be used by the directive
■ iElement ― the element where the directive is to be used
■ iAttrs ― a normalized list of attributes declared on this element
■ controller ― a controller
■ transcludeFn ― a transclude linking function prebound to the

correct transclusion scope

terminal When terminal is true, no lower priority directives will be

compiled. Directives with the same priority are still compiled.

template Used to specify the HTML generated by the directive. template

can be an HTML template string or a function that takes two argu-

ments, tElement and tAttrs, and returns a HTML string. If the

function version is used, tElement is the element where the direct-

Full Stack JavaScript Development with MEAN214

ive has been declared. tAttrs is a normalized list of attributes de-

clared on the element.

templateUrl Similar to the string version of template; however, the string is

loaded asynchronously from a file.

restrict A string containing a subset of the string EACM. If E is present, the

directive can be used as an element. If A is included, the directive

can be used as an attribute. Similarly, the presence of C or M allow

the directive to be used as a class or comment respectively.

An Example Custom Directive
Listing 17-3 revisits the code from Listing 17-2; however, in this example, a custom

authorNames directive has been created instead of using the built-in ngRepeat. The

first point to notice about the custom directive is that restrict: 'E' is used,

meaning that authorNames can only be used as an element. Next, the controller is

defined using the controller property (notice that the ngController has been re-

moved from the DOM). Finally, a link() function is used to create a template string,

compile it, and replace the new author-names element with the freshly compiled

DOM.

<!DOCTYPE html>
<html lang="en" ng-app="app">
 <head>
 <meta charset="utf-8">
 <title>Angular Directives</title>
 </head>
 <body>
 <author-names></author-names>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.25/
➥angular.js">
 </script>
 <script>
 'use strict';
 var app = angular.module('app', []);

 app.directive('authorNames', function($compile) {
 return {
 restrict: 'E',
 controller: function($scope) {
 $scope.people = [

215Angular Directives

 {
 firstName: 'Colin',
 lastName: 'Ihrig'
 },
 {
 firstName: 'Adam',
 lastName: 'Bretz'
 }
];
 },
 link: function(scope, element, attrs,
 controller, transclude) {
 var template = scope.people.map(function(person) {
 var str = '<div>' + person.firstName +
 ' ' + person.lastName + '</div>';

 return str;
 }).join('');
 var newElement = $compile(template)(scope);

 element.replaceWith(newElement);
 }
 };
 });
 </script>
 </body>
</html>

Listing 17-3. An example Angular application containing a custom directive

Summary
This chapter has explained how Angular’s built-in directives work, as well as how

you can create your own directives. We haven’t covered all of Angular’s built-in

directives, nor have we covered all the possible options that can be set on a directive

definition object. What we have done is cover the major points of directive develop-

ment and, we hope, armed you with enough information to read through the Angular

docs and develop some awesome directives of your own.

Full Stack JavaScript Development with MEAN216

Chapter18
Controllers
Controllers create a framework to promote code reusability and testability. They

are the basic building blocks of an Angular application. In previous chapters, we

covered data binding and directives. We briefly touched on Angular controllers at

the end of Chapter 16. In this chapter, we’re going to cover controllers in greater

detail. We’ll discuss what they are and what purpose they serve; we will then cover

some syntax issues, best practices, and examples.

Like everything related to Angular, it is important to remember that controllers are

just JavaScript functions. These functions are used to create a new Angular (or

scope) context and are bound to sections of HTML markup. A controller provides

a place to put application and view logic that is specific to a particular set of HTML

tags. Keep in mind that a single view can use multiple controllers: the view to

controller relationship is not one-to-one. It is also possible to reuse controllers in

different views.

Syntax
We’ve already seen some controllers defined, but let’s go over the specific syntax

used to define an Angular controller:

var app = angular.module('app', []);
app.controller('main', ['$scope', '$http', function($scope, $http) {
 //...
}]);

Listing 18-1. A controller stub

The first line creates an Angular module. A module represents a logical unit within

an application. It has one or more controllers, services, filters, and directives pack-

aged inside of it. In this example, we are creating a new module called app with

angular.module. Here, think of app as the entire Angular application where we’ll

place all of our controllers. The function signature is the module name, followed

by a string array of dependencies.

A dependency is a reference to another module that the current module needs to

function correctly. Angular will ensure that every module listed in the dependency

list is loaded before creating the app module. In a future chapter on client-side

routing, we’ll need a few modules loaded before our application module; however,

for this simple example we don’t need anything beyond the Angular boilerplate, so

we pass an empty array.

app.controller lets us add a controller object to app. Similar to the module function,

the first argument is the controller name and the second argument is another list of

dependencies with a function as the last element in the array. The function is where

the logic for the main controller will reside. The first two items in the dependencies

list are ones that this controller needs: $scope and $http. $scope is the local scope

context that every controller has and $http is an Angular HTTP module used to

make HTTP requests for remote resources.

The function signature suggests that inside the controller function, we’ll have access

to both a $scope and $http variable. Any time a main controller is created, Angular

will execute this function with a new $scope object and the $http object because

they are listed as dependencies to this controller function. While you can rename

the function arguments (for example, s and h), it is generally preferred to keep the

function argument and dependency name the same for readability.

There are other ways to declare controllers and specify dependencieswith Angular,

but the approach in Listing 18-1 is preferred, as the code will continue to function

after minification. In Listing 18-1, we have explicitly alerted Angular to what de-

Full Stack JavaScript Development with MEAN218

pendencies this controller needs by calling them out by name. Angular can infer

dependencies by name, but that will fail to work after the code is minified. After

minification, most variables are reduced to a single character and dependency

lookup by name no longer functions.

Dependencies
$scope is a child scope object whose parent is the global application scope. Gener-

ally, these are automatically created by Angular when a controller is specified with

ng-controller in the HTML. There are way too many properties and functions

associated with $scope to cover in this book, so check out the full documentation

on the Angular website.1 $scope has methods attached to it for interacting with the

$digest loop, and for creating additional $watch values and mechanisms for

sending and receiving events from other Angular objects.

$http2 is the promise-based module for making HTTP requests. The main function

takes a configuration object where you specify the route, method, and payload, as

well as many other attributes of an HTTP request. The $http() function returns a

promise object that has .then(),.success(), and .error() methods available.

We're going to use it in our example to make a request to our Express server to re-

trieve a list of employees.

Angular has a built-in dependency injection system. If you’re unfamiliar with de-

pendency injection, it’s an easy enough concept. It’s a design pattern where depend-

encies are injected into a dependent object (the main controller in this case) when

it's created and become part of the client object's state. This separates the client and

dependency logic and further decouples the client from the dependency. If you're

looking for a more in-depth look at dependency injection, check out the official

Angular documentation.3

By injecting the $http module into the controller, the controller is not responsible

for finding and creating the $http module; instead, $http is passed in as a paramet-

er. We want to make tests as small as possible and test only developer code. Using

dependency injection, we can pass a mock $http module that just returns static

1 https://docs.angularjs.org/api/ng/type/$rootScope.Scope
2 https://docs.angularjs.org/api/ng/service/$http
3 https://docs.angularjs.org/guide/di

219Controllers

https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/guide/di
https://docs.angularjs.org/guide/di

values to the controller. This allows us to just test the controller logic in isolation,

taking a server and the Angular $http module completely out of the test.

Expanding on Our Example
Let’s fully flesh out Listing 18-1. We want to retrieve a list of employees from our

server and display them. We should also be able to add and delete employees from

the list with the proper HTTP calls. This example will only focus on the client-side

code.

Express Integration
If you’ve been following along with the code and examples, you should have a

functional Express server at this point that we started building in Chapter 13. Place

Listing 18-2 in an HTML file in the public/html directory and point a browser to that

file. This will bring up the example and enable you to interact with it.

When the controller first loads, it makes a GET request using $http back to the Ex-

press server to get a list of employees. The /employees route we built in Chapter

13 communicates with the MongoDB instance and returns a list of employees from

the database.

The other two routes, POST to /employees and DELETE to /employees/:id gives

you a chance to expand on the functionality of the Express server on your own.

You'll need to use router.post and router.delete to set up the routes in the Ex-

press server. Inside the handler functions, utilize the Employee model to communic-

ate with the Employee collection in the database. Employee.remove is used for de-

leting and Employee.save for creating new employees. After successfully deleting

an employee, respond to the client with the updated employee document collection.

Finally, after creating a new employee in the database, respond to the client with

the newly created employee document. Looking back at Chapter 8 should provide

some helpful hints and examples on how to make these two new routes functional.

<html lang="en" ng-app="app">
 <body>
 <div ng-controller="main">
 <input type="text" ng-model="firstName" placeholder="first
➥name">
 <input type="text" ng-model="lastName" placeholder="first

Full Stack JavaScript Development with MEAN220

➥name">
 <button ng-disabled="!(firstName.length && lastName.length)"
➥ng-click="add()">Add</button>
 <table>
 <tr ng-repeat="p in employees">
 <td>{{p.id}}</td>
 <td>{{p.first}} {{p.last}}</td>
 <td><button ng-click="$parent.remove(p)">Remove</button>
➥</td>
 </tr>
 </table>
 </div>
 <div ng-controller="logger">
 <pre>
 <p ng-repeat="e in events track by $index">{{$index}} -
➥{{e}}</p>
 </pre>
 </div>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.16/
➥angular.js"></script>
 <script>
 var app = angular.module('app', []);

 app.controller('main', ['$scope', '$http', '$rootScope',
➥function($scope, $http, $rootScope) {
 $scope.employees = [];
 $scope.firstName = $scope.lastName = '';

 $http.get('/employees').success(function(data) {
 $scope.employees = data;
 $rootScope.$emit('log', 'GET /employees success');
 });

 $scope.add = function () {
 $http.post('/employees', {
 first: $scope.firstName,
 last: $scope.lastName
 }).success(function(data) {
 $scope.employees.push(data);
 $scope.firstName = $scope.lastName = '';
 $rootScope.$emit('log', 'POST /employees success');
 });
 };

 $scope.remove = function(employee) {

221Controllers

 $http.delete('/employees/' + employee.id).
➥success(function(data) {
 $scope.employees = data;
 $rootScope.$emit('log', 'DELETE /employees success');
 });
 }
 }]);
 app.controller('logger', ['$scope', '$rootScope',
➥function ($scope, $rootScope) {
 $scope.events = [];

 $rootScope.$on('log', function (event, data) {
 $scope.events.push(data.trim());
 });
 }]);
 </script>
 </body>
</html>

Listing 18-2. A complete controller example

That is a lot of code, so we’ll break it down into two parts: JavaScript and HTML.

JavaScript
We start by creating a new Angular module that will house all of our controllers

and name it app. You can name the module anything you like, but most examples

will use app for the module and variable names. Then we declare the main controller.

Basically every controller needs the $scope object, so that is added to the list of

dependencies. We are going to make requests to our server, so we'll need the $http

module as well. Finally, to facilitate communication between multiple controllers,

we include $rootScope. The $rootScope object gives us a direct reference to the

global scope object for the entire Angular application.

The controller's first few lines set its initial state. We are going to use employees as

the data store for the list of employees. Just like the Express router, $http has con-

venience methods exposed that map to the most common HTTP verbs. The first

task is to retrieve the list of employees from our server and load $scope.employees

with that data. To accomplish this, we make a GET request to /employees. In success

we set employees equal to the response from the web server, which is an array of

employee objects.

Full Stack JavaScript Development with MEAN222

Because employees is data bound to the view, as soon as its value changes, a new

$digest loop is triggered, automatically updating the view. Notice that no additional

code was required to update the view. Angular’s two-way data binding took care

of everything, even though we retrieved data from the server asynchronously.

Then we make use of $rootScope to emit a custom event. The first argument is the

event name and the second argument is the event payload that we want to pass to

any clients that may be listening. We want to use the $rootScope object because

the two controllers we’ll be working with are siblings and not nested inside each

other.

Next we create the two event handlers for adding and removing items, similar to

what was done in Listing 16-3. The big difference is that these methods are mapped

back to a web server with a real data store. The add method uses firstName and

lastName to create a new object literal that we POST to the web server. On the

server we create a new object and insert it into the database. In this example, the

server responds with the created object represented by data. After a successful

creation, we push data into the employees array. Because of data binding, a new

row is automatically added into the HTML table that represents the new employee.

Finally we add remove to the $scope object. This function makes a DELETE request

to the web server and passes an employee ID via a route parameter. The response

is the updated list from the database, so we can reset $scope.employees to the re-

turned result and let the view layer update.

The second controller, logger, is simple by comparison. We are going to use it as

an event logger. When a log event occurs, we want to add that event into the internal

events array.

We attach events to $scope and initialize it as an empty array. $rootScope.$on is

used to set up a listener for any log events that occur on $rootScope. The callback

function takes two arguments, the first being the Angular event object. It contains

information about how the event originated, the source and target scope, and func-

tions to manage event bubbling through different Angular scopes. The second argu-

ment is any payload data that is passed in from the emitting function. We are going

to push data, which will be a simple string, into the events array.

We will be able to leverage the logger controller throughout the application. The

advantage of making a new controller for event logging is that it can be reused on

223Controllers

many pages without knowing about any of the other controllers used in the same

view.

HTML
The HTML in Listing 18-2 should look familiar by this point, so we are only going

to highlight a few of the key changes. First, we introduced a new div to wrap the

DOM elements that are related to the main controller and set ng-controller="main".

This instantiates a new main controller and binds the DOM elements to the new

instance of main. We’ve also added a second div with ng-controller="logger"

set. It’s important to note that these controllers do not have a parent/child relation-

ship. They are direct siblings, which keeps their contexts from being nested.

Note also that we are using the full-name directive inside ng-repeat. We want to

pass the current item in the loop into the directive by setting person=p. This creates

an isolate scope inside the directive with a reference to the correct p object.

One new thing being used in the HTML is track by $index in the logger section

of the DOM. The optional track by argument to ng-repeat tells Angular how to

associate collection items to corresponding DOM elements. By default, Angular

uses JavaScript identity to make this association, which is generally fine for collec-

tions of objects; however, in the logger controller we are maintaining a list of strings,

and duplicates are unavoidable. Angular dislikes having duplicated DOM elements

that would occur using regular JavaScript identity on strings. Tracking the elements

with $index lets us specify that each unique index in the array should be treated

as a unique item.

Listing 18-2 is looking good now. It is a feature-complete user listing web application

that provides a nice user experience with code that’s easy to read and maintain. We

could also add sorting, highlighting, and validation quite effortlessly. But there is

still some room for improvement. What if we wanted to retrieve the list of employees

in a different controller? Additionally, because we wrote our server to be RESTful,

should there be a less code-heavy way to communicate with it?

Full Stack JavaScript Development with MEAN224

Simple Service
We are going to refactor our HTTP requests to an Angular service that uses another

of Angular’s built-in modules: $resource.4 $resource is a factory object that was

specifically designed to interact with RESTful web services. The factory pattern is

a well-established design that’s meant to solve the issues of working with class

constructors. Using a factory, a single function can return different types of objects.

We will use $resource to create a simple Employee service that will replace all of

our HTTP calls. It will also be able to be used by any other controller that needs

access to employee CRUD functions. ngResource is located in a separate script file,

so you'll need to update your HTML to include it after Angular. We loaded this

script via the Angular CDN at //code.angularjs.org/1.2.16/angular-re-

source.js.

One of the benefits of using services is that they are created as singletons, once per

ng-app block, and are shared among any controller nested inside it. This means

that when we have our service defined, it can be injected like any other dependency

and used by any controller in our application. It can also be tested in isolation

outside of any controller, providing another level of testability as well. For a complete

discussion on the different types of factory objects, please refer to the Angular

documentation.5

var app = angular.module('app', ['ngResource']);
app.factory('EmployeeService', ['$resource', function($resource) {
 return $resource('/employees/:employeeId', {}, {
 get: {
 isArray: true
 },
 delete: {
 isArray: true,
 method: 'DELETE'
 },
 post: {
 method: 'POST',

4 https://docs.angularjs.org/api/ngResource/service/$resource
5 https://docs.angularjs.org/guide/providers

225Controllers

https://docs.angularjs.org/api/ngResource/service/$resource
https://docs.angularjs.org/guide/providers
https://docs.angularjs.org/guide/providers

 }
 });
}]);

Listing 18-3. Creating the Employee service

In Listing 18-3, we are creating the app module and specifying that ngResource is

now a dependency for this module. ngResource makes the $resource dependency

available to any dependency list inside app. $resource is the object needed to create

our employee service. The second line is the exact same syntax as creating a con-

troller. The $resource dependency is referring to the ngResource module installed

into the global app module.

You’ll notice that the majority of the Employee service is just a configuration object.

The full particulars of everything you can configure with this object is outside the

scope of the book, but the Angular site has all the documentation.6 Effectively,

we’ve created a RESTful connector to our server using the /employee/:employeeId

resource. We’ve configured the get action to return an array, and delete has also

been configured to return an array and use the DELETE HTTP method. Finally,

we’ve included a post action that issues a POST request to the server.

These settings are specifically designed to work with the routes outlined in the

Express integration section. If your implementation deviates from our suggesed

course, you’ll need to update the settings for your EmployeeService to match your

implementation of the Express routes.

Using EmployeeService
Finally, in Listing 18-4, we will replace $http with our new EmployeeService:

app.controller('main', ['$scope', 'EmployeeService', '$rootScope',
➥function($scope, EmployeeService, $rootScope) {
 EmployeeService.get(function (data) {
 $scope.employees = data;
 });

 $scope.add = function () {
 EmployeeService.post({

6 https://docs.angularjs.org/api/ngResource/service/$resource

Full Stack JavaScript Development with MEAN226

https://docs.angularjs.org/api/ngResource/service/$resource

 first: $scope.firstName,
 last: $scope.lastName
 }, function (data) {
 $scope.employees.push(data);
 });
 };

 $scope.remove = function(employee) {
 EmployeeService.delete({
 employeeId: employee.id
 }, function (data) {
 $scope.employees = data;
 });
 }
}]);

Listing 18-4. Using EmployeeService

We have removed some code from the original main controller to focus solely on

integrating EmployeeService. EmployeeService can now be required into the main

controller exactly like any of the built-in Angular modules. We have replaced $http

in the dependencies list, as well as in the controller function signature.

These code changes should not impact the application functionality. They just clean

up the server interactions by removing all the $http boilerplate code. They also

encapsulate the employee server operations in a single module, which can be used

in many places and tested in isolation outside of a controller.

Summary
In this chapter, we’ve discussed Angular controllers, which are responsible for

communicating back and forth with the view. A controller creates a new context

that is a child of the parent scope. We discussed the preferred way to declare a

controller and how to specify different dependencies the controller needs. We talked

about one of the built-in Angular modules, $http, and demonstrated how to use it

to make requests to our existing Express server.

Next, we wrote a complete example in Listing 18-2 that employed all the Angular

topics covered so far. This includes directives, controllers, the $http module, event

handling, and controller-to-controller communication.

227Controllers

Finally, we did some refactoring of Listing 18-2 by writing our first service. This

enabled us to remove all of the $http boilerplate and replace it with a configuration-

centric $resource module. We also talked about injecting this module into our

controllers.

Full Stack JavaScript Development with MEAN228

Chapter19
Client-side Routing
In Chapter 18, we demonstrated how to make Ajax requests to our Express server

and load the results into $scope to display the results. That’s great for a single-page

website, but most applications span more than a single page. In Listing 18-2, what

if we wanted to add a new screen that could be used to edit an employee? The ap-

plication needs to change pages and display a new view, but we want to use the

benefits of an Ajax request and not lose all of our JavaScript state and static files in

the browser’s memory. We also want that page to be bookmarkable, so the page has

to be stateless.

This is where client-side routing really shines. Client-side routing allows developers

to create standard anchor tags throughout the HTML that will be handled by the

Angular router. The Angular router intercepts these links before they are sent to the

web server and runs them through a client-side routing table, responding with a

new page of content. The new page can have its own Angular controller and com-

pletely new block of HTML. To the user, it appears exactly the same as traditional

navigation, except the change is almost instant.

In this chapter, we are going to expand Listing 18-3 and move it one step closer to

our complete human resources application. We are going to use the list view from

Listing 18-3 and add an edit view as well. Each view will be stored in a discrete

HTML file. We'll also use a "layout" style HTML page, which will act as the static

part of the site and provide a “window” area where the client-side routing changes

will occur.

Getting Started with ngRoute
Routing in Angular has changed a few times during the development cycle. The

module needed used to come packaged in the Angular runtime; however, the Angular

team have since broken ngRoute out into a standalone file. The primary reason for

this was to reduce the download size of Angular web applications if there’s no re-

quirement for the routing module. Installing the ngRoute module exposes both

$routeProvider and $routeParams dependencies to controllers and configuration

blocks. We’ll cover both of these dependencies in more detail in the code example

part of this chapter. Just like ngResource, we recommend using the Angular CDN

for this example. The version we’ll be using can be found at //code.angu-

larjs.org/1.2.16/angular-route.js.

Application Overview
In this section, we’re going upgrade our existing application with client-side routing.

We want to display a list of users and some information about each of them. Then

we want to provide an edit button that takes the user to a new page and displays

an edit UI with which the user can interact. For simplicity’s sake, we’ll skip imple-

menting the save functionality.

First, we’ll need three HTML files: index.html, edit.html, and view.html. Remember,

app.use(express.static(__dirname + '/public')); creates a static file server

that looks in the /public directory for files. Create these files under public so that the

Express static middleware will serve them directly from the hard drive. After creating

the files, verify that the web server can properly send them to the browser.

Second, we want to create a place for our JavaScript code. For this example, we’re

going to use an external JavaScript file instead of inline <script> tags as in some

of our other examples. Create webapp.js under /public/scripts to keep the script files

separate from the views. webapp.js is where all the JavaScript code for this example

will be housed.

Full Stack JavaScript Development with MEAN230

Code
First, let’s look at index.html to see how we’re going to structure the rest of the ap-

plication:

<html lang="en" ng-app="app">
 <body>
 <h1>Your Human Resource Application</h1>
 <ng-view></ng-view>
 </body>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.16/
➥angular.js"></script>
 <script src="//code.angularjs.org/1.2.16/angular-route.js">
➥</script>
 <script src="//code.angularjs.org/1.2.16/angular-resource.js">
➥</script>
 <script src="scripts/webapp.js"></script>
</html>

Listing 19-1. The index.html file

Listing 19-1 will serve as the static portion of the application. We have script tags

to load Angular, the Angular router (ngRoute), and Angular resource (ngResource).

Finally, we add a reference to our own webapp.js script file. You should be familiar

with ng-app at this point; however, the ng-view is a new element in our toolbox of

Angular directives.

ng-view is a new element that’s exposed by ngRoute because they are used together.

It’s a placeholder for where the contents of a rendered HTML file will reside inside

the markup. Every time the current route changes, the content inside ng-view

changes according to the configuration of the route. This will make some sense

when we talk more about the routing.

Why Are All the Scripts in index.html?

All the scripts we need are located in index.html. This is so they stay loaded

throughout the life cycle of the application. If we put them inside either view.html

or edit.html, they would need to be downloaded every time the route changed. If

we had some CSS, we’d also want to include that in index.html as well.

231Client-side Routing

Router
These are the first few lines of webapp.js. We’ll continue to append code to this ex-

ample for the rest of this chapter:

var app = angular.module('app', ['ngRoute', 'ngResource']);

app.config(['$routeProvider', function($routeProvider) {

 $routeProvider
 .when('/view', {
 templateUrl: 'view.html',
 controller: 'view'
 })
 .when('/edit/:employeeId', {
 templateUrl: 'edit.html',
 controller: 'edit'
 })
 .otherwise({
 redirectTo: '/'
 });
}]);

Listing 19-2. The Angular Router

The first line creates our app module and installs ngRoute and ngResource. We

used ngResource in Listing 18-3, so that should be familiar to you. As previously

noted, ngRoute gives us access to the $routeProvider dependency. $routeProvider

is the object we’ll use to set up client-side routing.

First, a word about app.config. Angular modules, such as app, can have many

configuration blocks via .config and .run. At a high level, both these methods are

used to run configuration code during different phases of application bootstrapping.

The Angular documentation sums up the different block types as follows:1

1. Configuration blocks (.config) ― get executed during the pro-

vider registrations and configuration phase. Only providers and

constants can be injected into configuration blocks. This is to

prevent accidental instantiation of services before they have been

fully configured.

1 https://docs.angularjs.org/guide/module

Full Stack JavaScript Development with MEAN232

https://docs.angularjs.org/guide/module

2. Run blocks (.run) ― get executed after the injector is created and

are used to kickstart the application. Only instances and constants

can be injected into run blocks. This is to prevent further system

configuration during application run time.

In Listing 19-2, we’re using .config because we want to fully configure $routePro-

vider before the application starts. This makes sense because without the client-

side routing being completely set up before the application starts, navigation would

be broken, rendering the entire site useless. By tapping into the Angular bootstrap

process, we can be sure that our configuration code blocks (app.config) will run

before we receive any user input. This makes .config blocks the perfect place to

store code that runs once before the application starts.

The $routeProvider code should be fairly easy to read. Each .when call represents

a different URL in the browser. The second argument contains the options for the

router to use: templateUrl and controller. templateUrl instructs the router of

the location from which the template for the associated URL can be loaded. Note

the existence of ":employeeId" in the first parameter to .when. The Angular router

uses the same notation for route parameters as Express.

Programmatically setting the controller for a view can be helpful if you want to use

the same view but different controllers for two routes. You can keep ng-controller

in each of the views if you wish, but we feel it’s better to declare controller here

and make the views more controller-agnostic.

Routing Life Cycle Example
To really appreciate how powerful client-side routing is, let’s walk through an ex-

ample from request to response. If you were to enter index.html#/view into a

browser, the Angular router would examine the incoming request and try to match

a route defined in the routing table. If it finds one, it will make an Ajax request to

templateUrl and instantiate a new controller based on the controller option,

rendering that into the ng-view directive. If there are multiple matches for a route,

the last match is the one whose code is executed. If the route starts with index.html#

but there’s no match for any configured route, the .otherwise block will execute

and send the request back to /. By default, the Angular router will try to intercept

routes that have # in them. Routes without # will be normal requests and go through

the web server router.

233Client-side Routing

Service and Controllers
Most of this code should be familiar if you’ve read Chapter 18:

app.factory('EmployeeService', ['$resource', function($resource) {
 return $resource('/employees/:employeeId', {}, {
 list: {
 isArray: true
 },
 get: {
 isArray: false
 }
 });
}]);

app.controller('view', ['$scope', 'EmployeeService',
➥function($scope, EmployeeService) {
 $scope.employees = [];
 $scope.firstName = $scope.lastName = '';

 EmployeeService.list(function (data) {
 $scope.employees = data;
 });
}]);

app.controller('edit', ['$scope', 'EmployeeService','$routeParams',
➥ function($scope, EmployeeService, $routeParams) {
 $scope.employee = {};

 EmployeeService.get({
 employeeId: $routeParams.employeeId
 }, function (data) {
 $scope.employee = data;
 });
}]);

Listing 19-3. Service and Controllers

We have slightly tweaked EmployeeService in Listing 19-3 from its appearance in

Listing 18-3. If you recall the discussion about $resource from Chapter 18, most of

the code in Listing 19-3 should be recognizable. The first argument to $resource

is the route for this resource object, complete with route parameter :employeeId.

The second argument isn’t used in this example and is an empty object. We are

Full Stack JavaScript Development with MEAN234

using the third argument to declare what methods will be defined in the resultant

$resource we’re building.

We’ve added a list action that makes a GET request to /employees/:employeeId.

However, when we use the listmethod, we’re going to omit the employeeId because

we are treating list as the full list of employees. If a route parameter is omitted, it

is treated as an empty string. While this may be a little confusing, it’s how you can

use a single object, EmployeeService, and interact with all the Express server re-

sources. isArray indicates that the result for this request should be an array. The

get has been changed to no longer be an array because we’re going to use that action

to retrieve a single employee from the database. When we use the get function,

we’re going to pass an employeeId into the function, which will be used when the

EmployeeService object builds the URI to request from the Express server. So list

doesn’t need an employeeId because it’s expected to return all the employees, and

get needs an employeeId to return a specific employee.

The view and edit controllers are very simple. Only a few items are attached to

their respective $scope values, and just a single call is requiredto retrieve data with

EmployeeService. The edit controller introduces the $routeParams dependency.

$routeParams gives developers a convenient way to extract route parameters from

client-side routes, similar to req.params on the Express side. This module essentially

parses the current browser URL and tries to extract the route parameters for the

current route, attaching the values to $routeParams. This concept is the same as

route parameters in Express, just using slightly different syntax. In this example, it

provides an easy way to get the employeeId from the browser URL. Without

$routeParams, you'd need to use a regular expression to get data from the URL.

Views
Finally, to complete this example, we’ll build views that work with the Angular

router.

view.html

<table>
 <tr ng-repeat="p in employees">
 <td>{{p.id}}</td>
 <td>{{p.first}}</td>
 <td>{{p.last}}</td>

235Client-side Routing

 <td>Edit >>> </td>
 </tr>
</table>

edit.html

<fieldset>
 <legend>{{employee.first}} {{employee.last}}</legend>
 <input type="text" name="first" ng-model="employee.first">
➥<label for="first">First Name</label>
 <input type="text" name="last" ng-model="employee.last">
➥<label for="last">Last Name</label>
</fieldset>
Back <<<

Listing 19-4, Router views

Both of these views should feel familiar. The main details to note are the a tags:

notice that href includes the # sign. This alerts the Angular router to intercept this

URL and try routing it client side instead of forwarding it to the server. By using

the Angular router, we can navigate to different pages in the application simply by

decorating URLs with #.

Putting It Together
Once you’ve made all the changes outlined, start your server and point a browser

to index.html#/view to engage the Angular router. It will match on /view, make

an Ajax request to view.html, create a view controller, and send the result to the

browser. You should see a table of employees with clickable EDIT links. Clicking

on one of these links starts the routing process all over again. You should see the

edit view, and the browser should be pointed to a URL similar to /in-

dex.html#/edit/69c3974488bc9fe6. If you refresh the browser, the same employee

and view should be displayed. This is what is meant by bookmarkable: the display

state of the page is transmitted entirely through the URL. If you change the URL to

/index.html#/unknown, you’ll see the default landing page. The .otherwise option

in the router was engaged and sent the request back to the route URL. If you’re

looking for more of a challenge, update the edit view and EmployeeService to make

updating employees functional. Everything you need to make that work has been

covered in the last few chapters, so use this as a chance to test your understanding

of the topics discussed through to this point.

Full Stack JavaScript Development with MEAN236

Summary
In this chapter, we’ve demonstrated how to set up client-side routing with Angular.

It requires the ngRoute module, which gives us access to the dependencies

$routeProvider and $routeParams. $routeProvider is used to build the routing

table in an application configure block using .when, and .otherwise. templateUrl

tells the router to issue a GET request for the named file or resource when there’s

a matching client-side route. The controller option gives us a way to create the

correct controller for the related view. This gives developers more flexibility to mix

and match controllers instead of using the ng-controller directive.

$routeParams provides an easy way to extract information out of the URL without

having to resort to regular expressions. ngRoute also exposed the ng-view Angular

directive that acts as a target when new views are rendered. It is the part of the site

that changes when client-side routes are rendered. Everything outside of that element

stays intact when navigating to different client-side routes.

We discussed how the # symbol acts as an indicator for Angular to try to route the

current request client side. In our views, we were able to create traditional a tags

and set the href property to other client-side links without any special configuration.

These anchor tags were used to move from page to page without any additional

coding. This reduces the amount of maintenance and potential bugs that a custom

routing solution could introduce.

237Client-side Routing

Chapter20
Angular in Our App
Throughout Chapters 6, 9, and 13, we’ve created a reasonably straightfoward human

resources application API using Node, MongoDB, and Express respectively. In this

chapter, we’re going to create the front end of our application using Angular. The

result will be a full-blown MEAN application. This chapter contains a considerable

amount of code as it ties the rest of the application together, but we’ll do our best

to explain it clearly.

All the work done in this chapter will take place in the project’s public directory.

This directory is used to serve static resources such as HTML, CSS, JavaScript, and

image files. This is set up in index.js by the line in Listing 20-1. For the purposes

of this chapter, you should delete the existing contents of the public directory. Our

final public directory structure is shown in Figure 20.1.

app.use(express.static(path.join(__dirname, 'public')));

Listing 20-1. Configuration of static middleware

Figure 20.1. Our public directory structure

The Home Page
A defining feature of a single-page application is that it has a single HTML page.

The contents of our project's home page are shown in Listing 20-2. There are a few

points to note in this code. First, the html tag defines an Angular application named

app. Second, our application utilizes Bootstrap to simplify the styling process,1 as

well as Font Awesome to provide useful icons.2

Inside the body tag, an unordered list is used to provide a menu at the top of the

screen, while a div tag is used to display the Angular views. The Angular core lib-

1 http://getbootstrap.com/
2 http://fortawesome.github.io/Font-Awesome/

Full Stack JavaScript Development with MEAN240

http://getbootstrap.com/
http://fortawesome.github.io/Font-Awesome/

rary, as well as the $route and $resource services, are imported using three script

tags. Our own CSS file, style.css is also imported.

<!DOCTYPE html>
<html lang="en" ng-app="app" class="no-js">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <title>HR App</title>
 <meta name="viewport" content="width=device-width,
➥initial-scale=1">
 <link rel="stylesheet" type="text/css" href="//netdna.bootstrap
➥cdn.com/bootswatch/3.1.1/flatly/bootstrap.min.css"/>
 <link rel="stylesheet" type="text/css" href="//netdna.bootstrap
➥cdn.com/font-awesome/4.0.3/css/font-awesome.min.css">
 </head>
 <body class="container">
 <ul class="nav nav-pills">
 <li class="active">Home
 Employees
 Teams

 <div ng-view></div>
 <script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.25/
➥angular.js"></script>
 <script src="//code.angularjs.org/1.2.25/angular-route.js">
➥</script>
 <script src="//code.angularjs.org/1.2.25/angular-resource.js">
➥</script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" type="text/css" href="/css/style.css">
 </body>
</html>

Listing 20-2. The single, standalone HTML page in the application

CSS and Image Files
We'll only be covering CSS and image files in limited detail, but it's worth pointing

out that they exist. The contents of our custom stylesheet, css/style.css, are shown

in Listing 20-3.

241Angular in Our App

body {
 background: url('/images/background.png');
 background-repeat: repeat;
 min-width: 320px;
}

ul.nav.nav-pills {
 margin: 10px 0;
 background-color: #fff;
}

.employee-list-item .panel-body {
 display: -webkit-box;
 display: -moz-box;
 display: -webkit-flex;
 display: -ms-flexbox;
 display: box;
 display: flex;
}

.employee-list-item .panel-body > * {
 -webkit-align-self: center;
 align-self: center;
 -ms-flex-item-align: center;
}

.employee-list-item .panel-body .btn {
 margin-left: auto;
}

.employee-avatar {
 height: 200px;
 width: 200px;
 border-radius: 6px;
}

span.icon-container {
 display: inline-block;
 text-align: center;
 width: 48px;
 height: 48px;
 border: 1px solid #3498db;
 margin-right: 15px;
 border-radius: 4px;
}

Full Stack JavaScript Development with MEAN242

div.button-bar {
 text-align: left;
 margin-bottom: 10px;
}

div.form-offset {
 padding-top: 15px;
}

.margin-top-reset {
 margin-top: 0;
}

ul.address-lines {
 list-style: none;
 margin: 0;
 padding: 0;
}

ul.address-lines div.address-edit, .margin-bottom-space {
 margin-bottom: 5px;
}

ul.address-lines .in-line-input {
 margin-bottom: 5px;
}

Listing 20-3. Custom CSS code found in style.css

The images directory contains a background image (background.png), a default profile

picture (user.png), and an employees directory that contains profile pictures. Cur-

rently, only one user has a profile picture in the system. All other users will use

the default image.

app.js
The most interesting file in this chapter is js/app.js, which contains all our Angular

code. This code is shown in Listing 20-4. We begin by declaring our module, named

app, which depends on ngRoute and ngResource. A constant is defined to list ab-

breviations for each US state. This is going to be used in an employee directive that

updates employee information.

243Angular in Our App

The config() call is used to inject $routeProvider in order to create a client-side

router. In this example, the router supports five routes and an otherwise case that

sends the user back to the home page. The routes related to employees and teams

each have a controller that’s defined later in the code.

Next, two calls to factory() are used to create the EmployeeService and TeamSer-

vice. The factory() calls depend on $resource, which makes interacting with

RESTful APIs (such as our Express API) extremely easy.

We then define two custom directives using the directive() method. The first

directive, imageFallback, is used to set a fallback image for an img element. This

sets a default profile picture for employees without one. The second directive,

editInLine, is used to edit employee information without going through a different

route.

Finally, four controllers are created to use with our team and employee routes. With

the exception of EmployeeCtrl, these controllers are trivial. The EmployeeCtrl

controller is used to work with the individual employee view page. This controller

needs to perform a number of actions, and relies on the q promises library. For ex-

ample, this controller’s save() function is used to persist any changes to the Mon-

goDB database. If users begin to edit information but then change their mind, the

cancel() method is called. This method calls $route.reload(), which causes the

$route service to reload the current route even though the location hasn’t changed.

This wipes out any changes that had been made.

'use strict';
var app = angular.module('app', ['ngRoute', 'ngResource'])
 .constant('config', {
 states: ['AL','AK','AZ','AR','CA','CO','CT','DE','FL','GA','HI',
➥'ID','IL','IN','IA','KS','KY','LA','ME','MD','MA','MI','MN','MS',
➥'MO','MT','NE','NV','NH','NJ','NM','NY','NC','ND','OH','OK','OR',
➥'PA','RI','SC','SD','TN','TX','UT','VT','VA','WA','WV','WI','WY']
 });

app.config(['$routeProvider', function($routeProvider) {
 $routeProvider
 .when('/', {
 templateUrl: 'home.html'
 })
 .when('/employees', {
 templateUrl: 'employees.html',

Full Stack JavaScript Development with MEAN244

 controller: 'EmployeesCtrl'
 })
 .when('/employees/:employeeId', {
 templateUrl: 'employee.html',
 controller: 'EmployeeCtrl'
 })
 .when('/teams', {
 templateUrl: 'teams.html',
 controller: 'TeamsCtrl'
 })
 .when('/teams/:teamId', {
 templateUrl: 'team.html',
 controller: 'TeamCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });
}]);

app.factory('EmployeeService', ['$resource', function($resource) {
 return $resource('/employees/:employeeId', {}, {
 update: {
 method: 'PUT'
 }
 });
}]);

app.factory('TeamService', ['$resource', function($resource) {
 return $resource('/teams/:teamId');
}]);

app.directive('imageFallback', function() {
 return {
 link: function(scope, elem, attrs) {
 elem.bind('error', function() {
 angular.element(this).attr('src', attrs.imageFallback);
 });
 }
 };
}).directive('editInLine', function ($compile) {
 var exports = {};

 function link (scope, element, attrs) {
 var template = '<div class="in-line-container">';
 var newElement;

245Angular in Our App

 var displayValue;
 var options;

 switch (attrs.editType) {
 case 'select':
 displayValue = attrs.displayValue ? 'displayValue' : 'value';
 options = attrs.editOption;
 options = options.replace(attrs.editList, 'editList');

 template += '<div class="in-line-value" ng-hide="editing">
➥{{' + displayValue + '}}</div>';
 template += '<select class="in-line-input form-control"
➥ng-show="editing" ng-model="value" ng-options="'+ options +'">
➥</select>';

 break;
 case 'number':
 template += '<div class="in-line-value" ng-hide="editing">
➥{{value}}</div>';
 template += '<input class="in-line-input form-control"
➥ng-show="editing" type="number" ng-model="value" step="any"
➥min="0" max="99999" />'

 break;
 default:
 template += '<div class="in-line-value" ng-hide="editing">
➥{{value}}</div>';
 template += '<input class="in-line-input form-control"
➥ng-show="editing" type="text" ng-model="value" />';
 }

 // Close the outer div
 template += '</div>';
 newElement = $compile(template)(scope);
 element.replaceWith(newElement);

 scope.$on('$destroy', function () {
 newElement = undefined;
 element = undefined;
 });
 }

 exports.scope = {
 value: '=',
 editing: '=',

Full Stack JavaScript Development with MEAN246

 editList: '=',
 displayValue: '='
 };
 exports.restrict = 'E';
 exports.link = link;

 return exports;
});

app.controller('EmployeesCtrl', ['$scope', 'EmployeeService',
➥function($scope, service) {
 service.query(function(data, headers) {
 $scope.employees = data;
 }, _handleError);
}]);

app.controller('EmployeeCtrl', ['$scope', '$routeParams',
➥'EmployeeService', 'TeamService', '$q', 'config', '$route',
 function($scope, $routeParams, employee, team, $q, config,
➥$route) {

 $scope.address = {};

 function getTeam (teams, teamId) {
 for (var i = 0, l = teams.length; i < l; ++i) {
 var t = teams[i];
 if (t._id === teamId) {
 return t;
 }
 }
 }

 $q.all([
 employee.get({
 employeeId: $routeParams.employeeId
 }).$promise,
 team.query().$promise
]).then(function(values) {
 $scope.teams = values[1];
 $scope.employee = values[0];
 $scope.employee.team = getTeam($scope.teams,
➥$scope.employee.team._id);
 }).catch(_handleError);

 $scope.editing = false;

247Angular in Our App

 // To prevent multiple references to the same array, give us a new
➥copy of it.
 $scope.states = config.states.slice(0);

 $scope.edit = function() {
 $scope.editing = !$scope.editing;
 };

 $scope.save = function() {
 // To prevent empty lines in the database and keep the UI clean
 // remove any blank lines
 var lines = $scope.employee.address.lines;

 if (lines.length) {
 lines = lines.filter(function (value) {
 return value;
 });
 }

 $scope.employee.address.lines = lines;

 employee.update({
 employeeId: $routeParams.employeeId
 }, $scope.employee, function() {
 $scope.editing = !$scope.editing;
 });
 };

 $scope.cancel = function () {
 $route.reload();
 }

 $scope.address.addLine = function (index) {
 var lines = $scope.employee.address.lines;

 lines.splice(index + 1, 0, '');
 }

 $scope.address.removeLine = function (index) {
 var lines = $scope.employee.address.lines;

 lines.splice(index, 1);
 }
}]);

Full Stack JavaScript Development with MEAN248

app.controller('TeamsCtrl', ['$scope', 'TeamService',
➥function($scope, service) {
 service.query(function (data) {
 $scope.teams = data;
 }, _handleError);
}]);

app.controller('TeamCtrl', ['$scope', '$routeParams', 'TeamService',
➥function($scope, $routeParams, service) {
 service.get({
 teamId: $routeParams.teamId
 }, function(data, headers) {
 $scope.team = data;
 }, _handleError);
}]);

function _handleError(response) {
 // TODO: Do something here. Probably just redirect to error page
 console.log('%c ' + response, 'color:red');
}

Listing 20-4. Contents of app.js

Template Files
Our application has five template files: home.html, employees.html, teams.html,

employee.html, and team.html. The simplest of these is home.html, which is used on

a minimal home page. The contents of home.html are shown in Listing 20-5, while

the resulting page is shown in Figure 20.2.

<div class="jumbotron hero-spacer">
 <h1>Human Resources</h1>
 <p>This page is your destination for all HR related tasks.</p>
</div>

Listing 20-5. Home page template

249Angular in Our App

Figure 20.2. Home page view

Team and Employee Listing Views
The template code for the team and employee listing pages is shown in Listing 20-

6 and 20-7 respectively. Both templates use the ng-repeat directive to loop over

the members of the collection. Each member generates a link to the individual team

or employee page. An example of the employee list page is shown in Figure 20.3.

<div class="col-xs-12 col-sm-6 col-lg-4" ng-repeat="team in teams">
 <div class="panel panel-default employee-list-item">
 <div class="panel-body">
 <i class="fa fa-3x fa-group"></i>
➥
 {{team.name}}

 <i class="fa fa-eye"></i> View

 </div>
</div>

Listing 20-6. Team listing template

<div class="col-xs-12 col-sm-6 col-lg-4" ng-repeat="employee in
➥employees">
 <div class="panel panel-default employee-list-item">
 <div class="panel-body">
 <i class="fa fa-3x fa-user"></i>
➥
 {{employee.name.last}}, {{employee.name.
➥first}}
 <a href="#employees/{{employee.id}}" class="btn btn-sm
➥btn-info">

Full Stack JavaScript Development with MEAN250

 <i class="fa fa-eye"></i> View

 </div>
</div>

Listing 20-7. Employee listing template

Figure 20.3. Employee listing page view

Individual Team View
The individual team page displays a list of all employees on the team, making it

similar to the employee list page. The template file, team.html, is shown in Listing

20-8. The template is fairly basic, displaying a few fields from the model and using

ng-repeat to loop over all the members of the team. An example of the rendered

template is shown in Figure 20.4.

<ul class="breadcrumb">
 Teams
 <li class="active">{{team.name}}

<div>
 <h3>{{team.name}}</h3>
</div>
<div>
 <h4>Team Members</h4>
</div>
<div class="col-xs-12 col-sm-6 col-lg-4" ng-repeat="employee in
➥team.members">
 <div class="panel panel-default employee-list-item">
 <div class="panel-body">
 <i class="fa fa-3x fa-user"></i>
➥
 {{employee.name.last}}, {{employee.name.

251Angular in Our App

➥first}}
 <a href="#employees/{{employee.id}}" class="btn btn-sm
➥btn-info">
 <i class="fa fa-eye"></i> View

 </div>
</div>

Listing 20-8. Individual team template

Figure 20.4. Individual team page view

Individual Employee View
The final and most complex template belongs to the individual employee view page.

This page not only displays employee information, but also allows information to

be updated using our customer edit-in-line directive. The code for the template

is shown in Listing 20-9, while the rendered page is shown in Figure 20.5. Note

that there is currently no way to modify the user’s profile picture.

<ul class="breadcrumb">
 Employees
 <li class="active">{{employee.name.last}}, {{employee.name.first}}
➥

<div class="panel panel-default clearfix">
 <div class="panel-body">
 <div class="button-bar">
 <button class="btn btn-warning" ng-click="edit()"
➥ng-hide="editing">Edit</button>

Full Stack JavaScript Development with MEAN252

 <button class="btn btn-success" ng-click="save()"
➥ng-show="editing">Save</button>
 <button class="btn btn-danger" ng-click="cancel()"
➥ng-show="editing">Cancel</button>
 </div>
 <div class="col-xs-12 col-md-4 text-center">
 <h3 class="margin-top-reset">{{employee.name.first}}
➥{{employee.name.last}}</h3>
 <img ng-src="{{employee.image}}" image-fallback=
➥"images/user.png" class="employee-avatar">
 </div>
 <div class="col-xs-12 col-sm-6 col-md-4 form-offset">
 <div class="form-group">
 <label class="control-label">Employee ID</label>
 <div>#{{employee.id}}</div>
 </div>
 <div class="form-group">
 <label class="control-label">First Name:</label>
 <edit-in-line value="employee.name.first"
➥editing="editing" />
 </div>
 <div class="form-group">
 <label>Last Name:</label>
 <edit-in-line value="employee.name.last"
➥editing="editing" />
 </div>
 <div class="form-group">
 <label>Team:</label>
 <edit-in-line value="employee.team" editing="editing"
➥edit-list="teams" edit-option="t.name for t in teams"
➥edit-type="select" display-value="employee.team.name" />
 </div>
 </div>
 <div class="col-xs-12 col-sm-6 col-md-4 form-offset">
 <div class="form-group">
 <label class="control-label">Address</label>
 <ul class="address-lines">
 <li ng-repeat="line in employee.address.lines track
➥by $index">
 {{line}}
 <div ng-show="editing" class="input-group address-edit">
 <input type="text" class="form-control"
➥ng-model="employee.address.lines[$index]" />

 <button ng-click="address.addLine($index)"

253Angular in Our App

➥class="btn btn-success">
 <i class="fa fa-plus"></i>
 </button>
 <button ng-click="address.removeLine($index)"
➥ng-disabled="employee.address.lines.length === 1" class="btn
➥btn-danger">
 <i class="fa fa-trash-o"></i>
 </button>

 </div>

 <edit-in-line value="employee.address.city"
➥editing="editing" />

 {{employee.address.state}},
➥{{employee.address.zip}}

 <li ng-show="editing">
 <edit-in-line ng-show="editing" edit-type="select"
➥value="employee.address.state" editing="editing" edit-list="states"
➥ edit-option='s for s in states' />

 <li ng-show="editing">
 <edit-in-line value="employee.address.zip"
➥editing="editing" edit-type="number" />

 </div>
 </div>
 </div>
</div>

Listing 20-9. Individual employee template

Full Stack JavaScript Development with MEAN254

Figure 20.5. Individual employee page view

Summary
Readers are encouraged to experiment with and extend the existing HR demo ap-

plication. You could start small by adding new data points, such as employee salary.

If you want to add more advanced features, you could implement the functionality

for updating employee profile pictures or add a new view for dragging employees

between teams.

This chapter concludes our look at the MEAN stack. These twenty chapters should

provide you a solid foundation in the MEAN technologies, as well as some of their

alternatives. The remainder of this book will teach you about other JavaScript tools

surrounding the MEAN stack. These tools include task runners, debuggers, and

testing frameworks.

255Angular in Our App

Chapter21
Task Runners
In the examples we’ve shown in many of the Angular chapters, all the JavaScript

code lies in a single file. There are several benefits of working with a single file.

The browser only needs to download one file containing all of our JavaScript, and

can reuse a cached version everywhere on the site. It also reduces download order

issues because everything is contained in a single file with the code in the proper,

logical order. The entire block of code can be wrapped in a function expression that

keeps the contents out of the global namespace. Finally, minification can reduce

the browser download size, sometimes as much as 80%. The downside of working

with a single file is the maintenance, especially when working within a team. Each

developer would be editing the same file, leading to conflicts in the source control;

furthermore, locating specific code to change or fix for bugs can be very difficult in

a ten-thousand-line file.

Breaking client-side JavaScript into multiple files makes it much easier to maintain.

A developer can work on a specific feature or bug that only exists in one file,

drastically cutting down on change-management conflicts. It also allows your web

application to be more easily understood because each file represents a discrete

section or feature of a whole application. The downside is that each JavaScript file

needs to be downloaded individually from the browser. If one file requires features

from another file, the ordering of the script tags becomes very important. Resource

sharding can also be difficult because you lose control of the entire download order.

What we really want is the ability to write files in any way we want and have a

process turn them into best-practice static resource files. This is where task runners

are used. They are a series of tasks that run either automatically or on demand that

help manage our client-side resources. Task runners can do much more than manage

multiple JavaScript files, though; they can be used to compile CoffeeScript, make

CSS sprite files, compress and resize images, run CSS precompilers such as Stylus

or LESS, run JavaScript linters, and handle many other asset management tasks.

Introducing Gulp
Gulp is an uncomplicated asynchronous task runner written in JavaScript for Node.

It is fairly new, but has already gained tremendous community adoption because

of its core architecture design pattern, leveraging pipes and streams. If you skipped

that part of this book, we urge you to go back and read it now.

We’re going to proceed assuming that you have a fundamental understand of those

two core concepts. A second Gulp architecture decision also fits in with the Node

design philosophy as a whole: code specialization through modules and plugins.

Overall, Gulp provides low-level functionality. It has a few built-in methods and

properties, such as task management and file watching, but the majority of the

functionality comes from Gulp plugins. This should sound similar to the Node ar-

chitecture. To date, there are over 600 Gulp plugins.1 One of the core design prin-

ciples governing Gulp plugins states:2

Your plugin should only do one thing, and do it well.

All of the Gulp plugins perform one specialized task. Knowing this will help us

later in the chapter when we want to design our Gulp workflow. Each task you want

to happen will be achieved by a single Gulp plugin. A stream (usually a file stream)

is piped into a series of transform streams that modify the incoming stream in a

1 http://gulpjs.com/plugins/http://gulpjs.com/plugins/
2 https://github.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.mdhttps://git-

hub.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.md

Full Stack JavaScript Development with MEAN258

http://gulpjs.com/plugins/http://gulpjs.com/plugins/
https://github.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.mdhttps://github.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.md
https://github.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.mdhttps://github.com/gulpjs/gulp/blob/master/docs/writing-a-plugin/guidelines.md

specific way, and pipe that result into the next stream. Each of these actions is

handled by a unique Gulp plugin.

Setting Up Gulp
First, install gulp globally on your development machine with npm install gulp

-g. This will add the gulp CLI tool to your environment. You’ll also want to install

gulp locally so that it can be referenced from script files. Second, create an empty

script file named gulpfile.js in your project. Finally, we’re going to create some Stylus

and JavaScript files to work with. Create two new folders: ./assets/style and

./assets/javascript right at the root of the project. Inside ./assets/style, create one.styl

and two.styl. If you’re unfamiliar with Stylus,3 it’s the Node-specific CSS precompiler.

And if you’re feeling ambitions, you can write your own styles in these two files;

otherwise, you can copy these styles.

one.styl

html
 font-size: 62.5%

body
 background-color: #000
 width: 90%
 max-width: 900px

two.styl

.container
 background-color: #CAD
 color: #EEE

 h2
 font-size: 1.4rem
 font-weight: bold

Listing 21-1. Two sample Stylus files

For the JavaScript, we’re going to refer back to the client-side routing example in

Chapter 19 and split the code across three distinct files under ./assets/javascript.

3 http://learnboost.github.io/stylus/

259Task Runners

http://learnboost.github.io/stylus/

Looking at the sample files that follow, you should be able to see a potential problem

if we were not to control the file ordering. An error would occur if the contents of

view_controller.js appeared before the contents of mainapp.js, because app would be

undefined. To prevent this, we will make sure to order the files properly in the

build script without relying on any sorting method.

mainapp.js

var app = angular.module('app', ['ngRoute', 'ngResource']);

app.config(['$routeProvider', function($routeProvider) {
 // See Listing 19-2 for complete code
}]);

app.factory('EmployeeService', ['$resource', function($resource) {
 // See Listing 19-3 for complete code
}]);

view_controller.js

app.controller('view', ['$scope', 'EmployeeService',
➥function($scope, EmployeeService) {
 // See Listing 19-3 for complete code
}]);

edit_controller.js

app.controller('edit', ['$scope', 'EmployeeService','$routeParams',
➥ function($scope, EmployeeService, $routeParams) {
 // See Listing 19-3 for complete code
}]);

With these files in place, we are ready to start building our Gulp file.

Designing a Gulp File
In this section, we’re going to write a Gulp file that has two tasks: css and javas-

cript. Each task will be responsible for manipulating the files under ./assets to

create optimized browser-compatible files. Before we start coding, let’s write up a

list of responsibilities that each of our tasks will need to perform. This will come

in handy once we start coding.

Full Stack JavaScript Development with MEAN260

Stylesheet files

1. Compile all the Stylus files into plain CSS

2. Minify the CSS to reduce the file size

3. Combine all the CSS files into a single file

4. Write the minified version to ./public/css/main.min.css

JavaScript files

1. Combine all the JavaScript files into a single file in the correct order

2. Wrap the code in a function to keep the data out of the global namespace

3. Run a linter (JSHint)4 and report any code issues

4. Write the nonminified version to ./public/javascript/main.js

5. Minify the code to reduce the file size

6. Write a minified version to ./public/javascript/main.min.js

css Task
Every Gulp file should have at least one default task: default. The syntax to declare

a task is easy: gulp.task('default', function() {}). default is the task that

the gulp command will try to run when you execute gulp from the command line.

Inside the callback is where you start any of the other defined tasks. Let’s start by

declaring our default and css tasks:

var gulp = require('gulp');

gulp.task('css', function() {
 // Transform contents of one.styl and two.styl to CSS
});

4 http://www.jshint.com/about/

261Task Runners

http://www.jshint.com/about/

gulp.task('default', function() {
 gulp.start('css');
});

Listing 21-2. Gulp file stub

In Listing 21-2, we’ve created the default task and the stub of the css task. Inside

the default task, we execute gulp.start('css'), which will start the css task.

If you look back at the list of responsibilities this task needs to complete, the first

one is “Compile all the Stylus sheets into plain CSS.” gulp-stylus5 wraps the ex-

isting Stylus compiler in the Gulp interface, and compresses the result via function

options. Install gulp-stylus locally and ensure that you update the package.json

file when you do.

var stylus = require('gulp-stylus');

gulp.task('css', function() {
 gulp.src('./assets/style/*.styl')
 .pipe(stylus({
 compress: true
 }))
 .pipe(gulp.dest('./public/css'));
});

Listing 21-3. Compiling and writing Stylus files

The first line instructs Gulp to create a file stream for anything inside ./assets/style/

that has a .styl extension. We want to pipe that into the stylus plugin, which will

compile the files into compressed CSS. Finally, we want to pipe that result to

gulp.dest, which will write the results to ./public/css. If you run gulp from the

command line, you’ll see some logging information and, finally, a line indicating

that default is finished.

If you open ./public/css, you’ll see one.css and two.css. They will be standard, com-

pressed CSS files. All that’s left to do is combine them into a single file. There are

ways to do this using only Stylus, but that requires writing the files differently; for

brevity, we’ll just concatenate them as strings into a single output file.

5 https://github.com/stevelacy/gulp-stylus

Full Stack JavaScript Development with MEAN262

https://github.com/stevelacy/gulp-stylus

var concat = require('gulp-concat');

gulp.task('css', function() {
 gulp.src('./assets/style/*.styl')
 .pipe(stylus({
 compress: true
 }))
 .pipe(concat('main.min.css', {
 newLine: ''
 }))
 .pipe(gulp.dest('./public/css'));
});

Listing 21-4. Concatenating CSS files

In Listing 21-4, we’ve loaded gulp-concat, which concatenates files together. We

piped in the result of stylus into concat, named the file main.css, and passed an

option to specify the newLine to be an empty string. If you rerun gulp, you should

now see a single main.css file in ./public/css.

That should be everything we need for our css task. If you look back at the steps

under Stylesheet Files, each step lines up closely with the code in Listing 21-4. All

the Stylus files are compiled, minified, and combined into a single file that our web

server can send to clients.

javascript Task
Let’s apply what we’ve learned from the css task to the javascript task. We want

to perform some of the same responsibilities in this task as well (pipe files in a

specific folder, combine them into one, compress them, and then write them to a

different location). Since we’ve covered much of the basics in Listing 21-4, we can

use that as a starting point for Listing 21-5.

var jsSource = './assets/javascript/';
gulp.task('javascript', function() {
 return gulp.src([jsSource + 'mainapp.js',
 jsSource + 'edit_controller.js',
 jsSource + 'view_controller.js'])
 .pipe(concat('main.js'))
 .pipe(gulp.dest('./public/javascript'))
});

263Task Runners

gulp.task('default', function() {
 gulp.start('javascript');
 gulp.start('css');
});

Listing 21-5. Combining JavaScript files

Here we are just setting up the basics: declaring the javascript task, combining

all the .js files in that directory into main.js, and writing the result to ./pub-

lic/javascript. We also should add a start command for the javascript task,

as well inside the default task. If you run the Gulp file now, you’ll see the main.js

file inside ./public/javascript.

Remember, the order that the JavaScript files are combined in is important. To

control the order during processing, we pass an array of filepaths to gulp.src instead

of a wildcard. The order of the arguments is the order Gulp will process the files.

In this way, we have control over the order and can prevent any file order-related

bugs being introduced when the files are combined.

Let’s expand on our example to create a compressed copy inside ./public/javascript.

var rename = require('gulp-rename');
var uglify = require('gulp-uglify');
var jsSource = './assets/javascript/';

gulp.task('javascript', function() {
 gulp.src([jsSource + 'mainapp.js',
 jsSource + 'edit_controller.js',
 jsSource + 'view_controller.js'])
 .pipe(concat('main.js'))
 .pipe(gulp.dest('./public/javascript'))
 .pipe(rename({
 suffix: '.min'
 }))
 .pipe(uglify())
 .pipe(gulp.dest('./public/javascript'))
});

Listing 21-6. Compressing JavaScript files

Full Stack JavaScript Development with MEAN264

In Listing 21-6, we’ve added two new Gulp plugins, rename and uglify. After

writing the combined file, main.js, we want to make a copy of the file and rename

it to main.min.js and pipe that result into uglify. uglify is the Gulp plugin wrapper

for UglifyJS26 that minifies (or compresses) the resulting string of JavaScript. That

result is then piped into gulp.dest, and main.min.js is written into our public

JavaScript folder.

If you rerun gulp now, you should see both the compressed and normal main file

inside the JavaScript directory. The only job left to do is to wrap all the code in an

immediately invoked function expression and run the result through a linter, JSHint

in this case. If you are unfamiliar with linters, they warn developers about common

JavaScript mistakes and enforce style rules as well.

var wrap = require('gulp-wrap');
var jshint = require('gulp-jshint');
var jsSource = './assets/javascript/';

gulp.task('javascript', function() {
 gulp.src([jsSource + 'mainapp.js',
 jsSource + 'edit_controller.js',
 jsSource + 'view_controller.js'])
 .pipe(concat('main.js'))
 .pipe(wrap('(function(a, window){<%= contents %>}(angular,
➥ window));'))
 .pipe(jshint({
 predef: ['window', 'angular']
 }))
 .pipe(jshint.reporter('default'))
 .pipe(gulp.dest('./public/javascript'))
 .pipe(rename({
 suffix: '.min'
 }))
 .pipe(uglify())
 .pipe(gulp.dest('./public/javascript'))
});

Listing 21-7. Our final JavaScript task

6 https://github.com/mishoo/UglifyJS2

265Task Runners

https://github.com/mishoo/UglifyJS2

Finally, we’ve added wrap and jshint into our Gulp task. wrap implements the

Gulp interface to wrap stream contents with a lo-dash template.7 This allows us to

wrap the output of the concatenation, contents, in a function expression.

That result is then piped into the jshint Gulp plugin. This plugin wraps the core

JSHint8 functionality up in a Gulp wrapper. There are several configuration options

you can supply to JSHint either directly through the plugin, or through a configur-

ation file. For our example, we just want to alert jshint about the global variables

window and angular, since they are provided from external sources. The result of

JSHint are piped into the reporter, which will log the results out to the console.

Lastly, you need to update all your script tags to reference /javascript/main.js or

/javascript/main.min.js, depending on your deployment environment.

watch Task
Let’s add one more basic task, just for convenience. If you’ve been following along,

you should notice that you have to keep running gulp every time there are changes

to the JavaScript and Stylus source files in assets. It would be nice if Gulp would

run any time a source file changed. Let’s create one more task that watches our assets

folders, running the appropriate task any time there is a file change.

gulp.task('watch', function() {
 gulp.watch('./assets/javascript/*.js', ['javascript']);
 gulp.watch('./assets/style/*.styl', ['css']);
});

Listing 21-8. Creating a watch task

This task uses gulp.watch, which watches the matching files for changes. When

there are changes, it will gulp.start each task listed in the second argument. Now

you can open a new terminal session, run gulp watch, and Gulp will continue to

run and watch for changes to the files under assets, running the appropriate task

when necessary.

7 http://lodash.com/docs#template
8 https://github.com/jshint/jshint/

Full Stack JavaScript Development with MEAN266

http://lodash.com/docs#template
https://github.com/jshint/jshint/

Summary
In this chapter we covered task runners, which can also be referred to as build

scripts. Task runners take client-side resources and transform them into more op-

timized, browser-friendly formats. This enables developers to leverage better code

organization and higher-order languages such as Stylus or CoffeeScript.

Then we covered the task runner Gulp. Gulp is a stream and pipe system, making

it very fast and easy to use. Every action in Gulp generally boils down to stream

manipulation that is handled by a Gulp plugin. The results of a single plugin are

piped into the next one, creating a Gulp task.

Finally, we wrote a functional gulpfile.js that had a task for handling Stylus files and

one for managing JavaScript files. The css task compiled the Stylus down into

standard CSS, combined the two files, and minified the result into main.min.css. The

javascript task was much more involved; it combined multiple files, created a

minified and a nonminified copy, ran the result through JSHint to check for code

quality, and wrapped everything in a function expression.

We finished our Gulp discussion by creating a watch task that watches specific files

for changes and runs tasks when a change occurs. This makes using a build step

almost completely transparent.

Gulp is a very easy and powerful task runner. It embraces many of the same core

philosophies as the Node core. If you understand pipes and streams, you can pick

up Gulp very quickly. We hopes this demonstrates the utility and flexibility of using

a task runner for your own site.

267Task Runners

Chapter22
Debugging
Unfortunately, bugs are a part of life when writing software, no matter what language

you’re working with. Debugging, as the name suggests, is the process of tracking

down bugs and fixing them. The process of debugging can be as simple as adding

console.log() calls to your code to verify that certain variables hold expected

values. But for more involved bugs, you’ll want to use a debugger. Debuggers are

extremely successful at tracking down bugs, as they allow you to step through an

application line by line, inspecting (and modifying) variable values.

This chapter will teach you how to debug JavaScript applications using Google

Chrome’s DevTools. All modern browsers have similar debugging facilities, but

we’ve chosen to focus on Chrome for two reasons. First, at the time of writing,

Chrome is the most popular browser in both the desktop and mobile markets.1

Second, Node has a fantastic debugger called node-inspector that works with

DevTools.2

1 http://www.sitepoint.com/browser-trends-september-2014-chrome-top-mobile-browser/
2 https://github.com/node-inspector/node-inspector

http://www.sitepoint.com/browser-trends-september-2014-chrome-top-mobile-browser/
https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector

The debugger Statement
All major JavaScript environments (browsers, Node.js, and so on) come with a built-

in debugger; however, the debugger is not typically enabled by default. The process

of running an application with the debugger enabled is known as "attaching the

debugger", and it varies slightly from each debugger. JavaScript’s debugger statement

is used to invoke a debugger on an application, if one is attached. If an application

has no debugger associated with it, the debugger statement has no effect.

To illustrate how the debugger statement works, let’s look at the example in Listing

22-1. The JavaScript on this page displays a greeting if the variables i and j are

equal. So, for our program to function correctly, we want these two values to be

equal. In looking at the code, clearly they are unequal, but for the sake of this ex-

ample, we want to see why the code inside the if statement fails to execute.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Debugging Intro</title>
</head>
<body>

 <script>
 var span = document.querySelector('span');
 var i = 0;
 var j = 1;

 if (i === j) {
 span.innerText = 'Hello!';
 }
 </script>
</body>
</html>

Listing 22-1. An HTML page that behaves unexpectedly

The same code is shown again in Listing 22-2, but in this example a debugger

statement has been added just before the if statement. Now open this page in

Chrome and notice that nothing happens―no greeting, no debugger magic, nothing.

Full Stack JavaScript Development with MEAN270

We haven’t enabled the debugging tools, so the debugger statement doesn’t do

anything. Let’s change that.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Debugging Intro</title>
</head>
<body>

 <script>
 var span = document.querySelector('span');
 var i = 0;
 var j = 1;

 // Set a breakpoint before the conditional
 debugger;

 if (i === j) {
 span.innerText = 'Hello!';
 }
 </script>
</body>
</html>

Listing 22-2. The same page from Listing 22-1 with a debugger statement added

Running Chrome’s Debugger
Open Chrome’s developer tools by right-clicking on the page and clicking Inspect

Element. Next, refresh the page. Doing this with the developer tools enabled allows

the debugger to be attached. This time, you should invoke the debugger as shown

in Figure 22.1, which reveals the file and line where execution was paused on the

debugger statement. This predefined pause in execution is known as a breakpoint.

On the right-hand side of the image, notice the two panels, Scope Variables and

Global. These panels can be expanded to view the variables and values in the local

and global scope respectively. Our code is currently executing in the global scope,

so nothing is listed in the Scope Variables panel. Expand the Global panel and scroll

down until you find i and j (you'll probably have to scroll down quite a long way,

as there are a lot of items defined in the global scope, such as browser API objects).

You’ll see that i is zero, and j is one.

271Debugging

Figure 22.1. Chrome’s debugging tools

Controlling the Debugger
Now that we can see the values of the variables, let’s step through the if statement

to see if it is executed (though, we do know it hasn’t). Figure 22.2 shows the debugger

with the control buttons highlighted. These six buttons, from left to right, allow you

to resume execution, step over a function, step into a function, step out of a function,

deactivate breakpoints, and break on exceptions.

Figure 22.2. Debugger controls

The resume button will cause the application to begin executing as normal until

another breakpoint is encountered or the program ends. The step over and step in

buttons are used to execute the next line of code. If the line is a function, step over

will treat it as a single line of code, while step in will allow you to debug the function

Full Stack JavaScript Development with MEAN272

line by line. The step out button will cause the debugger to execute the rest of the

current function normally, and then continue debugging.

Paused Execution Disables Refresh

If execution is paused in the debugger, you may not be able to refresh the page.

You can solve this by exiting out of DevTools or pressing the resume button.

However, pressing the resume button may cause execution to pause if another

breakpoint is encountered.

The deactivate breakpoints button causes breakpoints encountered in the future to

be ignored. If this is enabled and you refresh the page, the debugger statement will

fail to pause execution. The pause on exceptions button causes uncaught exceptions

to be treated as breakpoints. When this is enabled, you are shown a checkbox that

allows you to also pause on caught exceptions.

Now that we’ve gone over the basic debugger controls, refresh the page so that you

are paused on the debugger statement. Press the step over or step in button to ad-

vance to the if statement. Press the button again, and notice that the code inside

the if statement has not executed. Next, we’ll look at how you can modify the values

of variables inside the debugger to test out different scenarios.

Modifying Variables
There are a few ways to modify variables while the debugger is running. The simplest

way is to find the variable in the Scope Variables or Global panels, double-click

on the variable name, and then edit the variable’s value. Note that any changes made

to these values will persist even outside the debugger.

As an example, refresh the page, find the variable j in the Global panel, and set its

value to zero. If you step through the if statement, you’ll notice that the conditional

now evaluates to true. Similarly, if you set the value of j and simply resume exe-

cution, the page will display the expected greeting.

A second way to inspect and modify values is by switching to the Console tab. This

offers you a fully featured REPL environment. In our example, you might switch to

the Console tab, inspect and set some values, and then switch back to the Sources

tab where the debugger controls live. An example that uses the Console tab is shown

in Figure 22.3. After running these commands in the Console tab, switch back to the

273Debugging

debugger controls and either step through or just resume execution, and the greeting

should be displayed.

Figure 22.3. Using the debugger console

We trust that with your newfound debugging skills, you can identify the line that

causes our simple page’s greeting to not display. Now we’ll look at the same problem

in Node.js.

Node’s Debugger
Node ships with a built-in debugger. Be warned, it is not too user-friendly, hence

why we’ll be covering node-inspector later. To attach the debugger to your applica-

tion, run node with the debug flag as shown in Listing 22-3. The contents of app.js

are shown in Listing 22-4.

node debug app.js

Listing 22-3. Running a Node application in interactive debug mode

var i = 0;
var j = 1;

// Set a breakpoint before the conditional
debugger;

if (i === j) {
 console.log('Hello!');
}

Listing 22-4. Contents of app.js from Listing 22-3

Full Stack JavaScript Development with MEAN274

Running with the debug flag launches an interactive debugger session, which sets

a breakpoint on the first line of the application, shown in Listing 22-5. Notice that

the line numbers are printed next to the code, with the > character indicating the

current line.

< Debugger listening on port 5858
connecting to port 5858... ok
break in app.js:1
> 1 var i = 0;
 2 var j = 1;
 3
debug>

Listing 22-5. Output from starting app.js in theinteractive debug model

-debug and --debug-brk

The debug argument launches an interactive debugger session; however, you can

also use the arguments --debug or --debug-brk, which causes the debugger to

listen for connections on port 5858. The difference between --debug and --de-

bug-brk is that --debug-brk also sets a breakpoint on the first line of the ap-

plication. You can also change the debug port using the --debug-port argument.

For example, node --debug-port=4000 --debug-brk app.js would set a

breakpoint on the first line of app.js and listen for debugger connections on port

4000.

You can control the debugger by entering commands at the debug> prompt. Table

22-1 provides a basic listing of debugger commands, which are self-explanatory.

Notice the parallel between the cont, next, step, and out commands and the

DevTools debugger controls. Also note that you can exit the debugger using Control-

C or Control-D.

275Debugging

Table 22.1. Useful debugger commands

DescriptionCommand

Resumes executioncont or c

Steps to the next instructionnext or n

Steps into a function callstep or s

Kills the executing scriptkill

Restarts the scriptrestart

Pauses running codepause

Lists all loaded scriptsscripts

Displays source code, showing n lines before and

n lines after the current line

list(n)

Inspecting and modifying variables in Node’s debugger is a bit tricky. You cannot

access the variables directly from the debugger. Instead, you must issue the repl

command. This will launch a REPL in the debugger, where you can issue JavaScript

commands. Once you’re finished, you must exit the REPL using Control-C to return

to the debugger. Any changes to variables made in the REPL will persist.

Listing 22-6 shows a full run of app.js that sets j to zero so that the greeting is dis-

played. Note that Node 0.11 is required for this example to run properly. Running

this in Node 0.10 results in the variable failing to update properly. Anyway, if this

seems like an arduous process just to change a value from one to zero and execute

an if statement, you would be correct. That’s why node-inspector was created.

< Debugger listening on port 5858
connecting to port 5858... ok
break in app.js:1
> 1 var i = 0;
 2 var j = 1;
 3
debug> c
break in app.js:5
 3
 4 // Set a breakpoint before the conditional
> 5 debugger;
 6
 7 if (i === j) {

Full Stack JavaScript Development with MEAN276

debug> repl
Press Ctrl + C to leave debug repl
> j
1
> j = 0;
0
debug> n
break in app.js:7
 5 debugger;
 6
> 7 if (i === j) {
 8 console.log('Hello!');
 9 }
debug> n
break in app.js:8
 6
 7 if (i === j) {
> 8 console.log('Hello!');
 9 }
 10 });
debug> n
< Hello!
break in app.js:10
 8 console.log('Hello!');
 9 }
>10 });
debug>

Listing 22-6. Modifying a variable via the Node debugger

debug> repl
Press Ctrl + C to leave debug repl
> j
1
> j=0;

277Debugging

0
> j
1

node-inspector
node-inspector is a third-party module that creates an interface between Node’s

built-in debugger and Chrome’s DevTools interface. The first step is to install node-

inspector using the command shown in Listing 22-7.

npm install node-inspector -g

Listing 22-7. Globally installing node-inspector

Next, run your application with either the --debug or --debug-brk flag. This choice

will depend on the nature of your application. If it’s a server that waits for connec-

tions, then --debug will work; however, if your application will run to completion

when you start it, you’re going to want to use --debug-brk to create a breakpoint.

For a basic application such as the one in Listing 22-4, we’re going to use --debug-

brk, as shown in Listing 22-8.

node --debug-brk app.js

Listing 22-8. Launching an application with the --debug-brk flag

Next, launch node-inspector in a separate terminal window. It will connect to the

debugger running in your application. Listing 22-9 shows the command being issued

and the resulting output.

node-inspector
Node Inspector v0.7.4
Visit http://127.0.0.1:8080/debug?port=5858 to start debugging.

Listing 22-9. Connecting to your application’s debugger using node-inspector

Note the URL http://127.0.0.1:8080/debug?port=5858. If you visit this URL in

Chrome, you’ll be greeted with the DevTools interface. You might notice that the

code is unfamiliar. This is because the breakpoint has been set just before your ap-

plication runs. Press the resume button and you’ll be taken into your application

Full Stack JavaScript Development with MEAN278

code as shown in Figure 22.4. From here you can access all the familiar DevTools

features covered earlier in this chapter. Take a look at the values in the expanded

Scope Variables panel. You’ll see your application variables, i and j, as well as

familiar Node variables such as __dirname, __filename, and exports.

Figure 22.4. Debugging a Node application using node-inspector

node-debug
node-inspector is leaps and bounds ahead of the built-in Node debugger in terms

of usability. Yet running your application and node-inspector, as well as opening

a browser window, are all repetitive tasks that could be automated. The node-debug3

module makes debugging with node-inspector extremely straightforward. Start by

installing node-debug as shown in Listing 22-10.

npm install node-debug -g

Listing 22-10. Globally installing node-debug

Now, anytime you want to use node-inspector, simply launch your application with

node-debug instead of node, as shown in Listing 22-11. This will automatically

open DevTools with a connection to your Node application.

3 https://github.com/jfirebaugh/node-debug

279Debugging

https://github.com/jfirebaugh/node-debug

node-debug app.js

Listing 22-11. Running node-inspector via node-debug

The maintainers of node-inspector found this functionality to be so useful that

they’ve added it to the newest versions, essentially making this module obsolete.

node-inspector have been kind enough to maintain the node-debug app.js interface

to avoid confusion and maintain backwards compatibility.

Summary
This chapter has introduced you to JavaScript application debugging. It started by

teaching you the basics of Chrome’s DevTools debugger, but, as usual, there is still

a lot more to learn about DevTools. We encourage you to learn more via the DevTools

documentation.4 From there, the chapter moved on to Node’s built-in debugger that

is, unfortunately, far from user-friendly. Finally, we looked at node-inspector, a

tool that uses DevTools as a more adaptable interface on top of Node’s debugger.

4 https://developer.chrome.com/devtools

Full Stack JavaScript Development with MEAN280

https://developer.chrome.com/devtools
https://developer.chrome.com/devtools

Chapter23
Testing
No one would debate that writing tests for software is valuable. There are arguments

about which testing methodology might be better or more comprehensive, but there’s

one fact that all developers can agree on: any production code should have compre-

hensive tests. In well-tested software, the amount of test code written often exceeds

the amount of functional code. Tests provide a safety net to optimize, refactor, and

upgrade the code without fear of introducing unexpected bugs. Good tests can also

help developers discover issues before the code is deployed into production. In

modern web applications that combine multiple frameworks and libraries, proper

testing is the most reliable way to ensure everything continues to run smoothly.

JavaScript is no exception. It could be argued that JavaScript requires an even

greater amount of testing because of the loosely typed nature of the language. The

differences in the JavaScript implementation from browser to browser also increase

the need to thoroughly test client-side JavaScript. Even when working within well-

tested frameworks such as Express and Angular, you should have unit tests that

cover your application code.

In this chapter, we’re going to touch on testing both the Express server and the

Angular application using testing frameworks. We recommend always using a

testing framework, rather than a long list of if and else statements.

A framework provides a uniform way to structure tests, offers different reporting

options, and makes maintaining test code easier. The frameworks presented in this

chapter are far from being the only testing frameworks available, but they are the

ones we chose to showcase.

Testing Node
There are a number of modules and frameworks designed to test Node applications.

For the purposes of this book, we’re going to focus on a framework named Mocha.1

We chose to focus on Mocha because it’s extremely popular and works in both Node

and the browser. Mocha can be installed via npm using the command shown in

Listing 23-1.

npm install -g mocha

Listing 23-1. Installing Mocha via npm

Once Mocha is installed, you can invoke it by issuing the mocha command. This

will attempt to execute any JavaScript files in the current directory’s test directory.

If this directory does not exist, mocha will try to run a JavaScript file named test.js.

Alternatively, you can pass the name of the file you want to execute as an argument

to mocha.

Defining Tests
When Mocha executes a file, it expects tests to be defined using the it() function.

it() takes two arguments. The first is a string that describes what the test does,

while the second is a function representing the test. A file can contain any number

of tests. A test is considered to have passed if it runs to completion, and failed if it

throws an exception.

Tests can also be grouped together hierarchically into suites, which can also be

nested in a hierarchy. A suite is defined using the describe() function. describe()

1 http://visionmedia.github.io/mocha/

Full Stack JavaScript Development with MEAN282

http://visionmedia.github.io/mocha/

also takes two arguments. The first is a string describing the test suite. The second

argument is a function containing zero (although an empty suite would be fairly

useless) or more tests.

Listing 23-2 shows an example file that can be understood by Mocha. This file

consists of a top-level test suite, a nested test suite, and four tests. Tests 1 and 2

belong to the nested suite, while Test 3 belongs to the top-level suite, and Test 4

belong to no suite. Technically, Mocha defines a nameless top-level suite that con-

tains everything else, including Test 4. Save this code in a file named test.js and

then run the command mocha. You should see output similar to Listing 23-3. Notice

that Test 2 fails because it throws an exception. Your output will likely contain an

additional stack trace for the error, which has been omitted here.

describe('Top Level Tested Suite', function() {
 describe('Nested Test Suite', function() {
 it('Test 1', function() {
 });

 it('Test 2', function() {
 throw new Error('problem');
 });
 });

 it('Test 3', function() {
 });
});

it('Test 4', function() {
});

Listing 23-2. A sample Mocha input file containing suites and tests

Mocha’s Testing Interfaces

Mocha provides several testing interfaces.2 The two most popular are behavior-

driven development (BDD) and test-driven development (TDD). The same functions

are available in each interface, but with different names. For example, describe()

and it() are BDD functions. The equivalent functionality is available via the

2 http://mochajs.org/#interfaces

283Testing

http://mochajs.org/#interfaces

suite() and test() functions as part of the TDD interface. This book uses the

BDD functions.

 ✓ Test 4
 Top Level Tested Suite
 ✓ Test 3
 Nested Test Suite
 ✓ Test 1
 1) Test 2

 3 passing (8ms)
 1 failing

 1) Top Level Tested Suite Nested Test Suite Test 2:
 Error: problem

Listing 23-3. Example output from running the code in Listing 23-2

Asynchronous Tests
Node is typically associated with asynchronous code. For Mocha to work well with

Node, it needs to support asynchronous tests. Marking a test as passing is inadequate

with asynchronous code, as the function could very easily complete while some

long-running asynchronous operation is still happening.

Mocha supports asynchronous tests by allowing you to pass a callback function to

it(). This callback is typically named done by convention. Calling done() indicates

that the test was successful, while a failure is still marked by a thrown exception.

Listing 23-4 shows an example of an asynchronous test. In this example, fs.read-

File() is invoked on a file named some_file.txt. If an error is passed to the

readFile() callback, it’s thrown as an exception, causing the test to fail. If there is

no error, done() is called and the test passes.

var fs = require('fs');

it('Asynchronous Test', function(done) {
 fs.readFile('some_file.txt', function(error, data) {
 if (error) {
 throw error;
 }

Full Stack JavaScript Development with MEAN284

 done();
 });
});

Listing 23-4. An asynchronous test that reads a file

skip() and only()
Mocha allows you to selectively run a certain subset of your tests or suites. The

methods skip() and only() are used to denote whether a test should be skipped

or run respectively. skip() is useful if a test needs to be temporarily disabled for

whatever reason. only() is useful for marking a few tests to be run without the need

to comment out large blocks of code. An example that uses skip() is shown in

Listing 23-5. If you run this code through Mocha, only Test 2 will execute. If you

were to replace skip() with only(), then only Test 1 would execute. Note also that

this example applies skip() to a test. The same task can be accomplished for an

entire test suite (describe.skip()).

it.skip('Test 1', function() {
});

it('Test 2', function() {
});

Listing 23-5. An example use of skip()

Test Hooks
Mocha provides optional hooks that can be used to execute code before and after

test runs. This is useful for setting up data before a test, and cleaning up after a test.

Specifically, there are four hooks that can be associated with a test suite:

■ before() ― runs once before the test suite is executed
■ beforeEach() ― runs before each test in the suite is executed
■ after() ― runs once after the test suite executes
■ afterEach() ― runs after each test in the suite executes

285Testing

All four of these functions take a function as their only argument. If you need to

execute asynchronous code in one of these hooks, pass done() to the function argu-

ment.

Listing 23-6 shows an example test suite containing two tests and all four hook

functions. The output from running this code is shown in Listing 23-7. Notice that

the run starts with begin() and ends with after(). Additionally, beforeEach()

runs prior to each individual test, and afterEach() follows each test.

describe('Suite', function() {
 before(function() {
 console.log('before()');
 });

 beforeEach(function() {
 console.log('beforeEach()');
 });

 afterEach(function() {
 console.log('afterEach()');
 });

 after(function() {
 console.log('after()');
 });

 it('Test 1', function() {
 console.log('Test 1');
 });

 it('Test 2', function() {
 console.log('Test 2');
 });
});

Listing 23-6. A test suite with hooks

 Suite
before()
beforeEach()
Test 1
 ✓ Test 1
afterEach()

Full Stack JavaScript Development with MEAN286

beforeEach()
Test 2
 ✓ Test 2
afterEach()
after()

Listing 23-7. Partial output from Listing 23-6

Assertions
Up to this point, the simple tests that we created explictly threw errors. This is a

valid way to write tests, but not the most elegant. A preferred method involves

writing assertions. Assertions are pieces of logic that test that certain expected

conditions of the test are being met. For example, an assertion might state that a

variable holds a specific value, or that a certain function is expected to throw an

exception based on its inputs.

For very basic tests, you might be interested in using Node’s core assert module.3

For the purposes of this book, we’ll use the more powerful Chai assertion library.4

Like Mocha, Chai can be used in both Node and the browser. Chai also makes the

claim on its home page that it “can be delightfully paired with any JavaScript testing

framework”. It can be installed using the command shown in Listing 23-8.

npm install chai

Listing 23-8. Command to install chai

Chai also supports several assertion interfaces: should,5 expect,6 and assert.7 This

book is going to use the expect style, which is designed for BDD style testing. The

expect style allows you to write your tests in in a fashion that reads very much like

natural language. For example, the Mocha test in Listing 23-9 asserts that the variable

foo is equal to 4 using Chai’s expect style.

3 http://nodejs.org/api/assert.html
4 http://chaijs.com/
5 http://chaijs.com/guide/styles/#should
6 http://chaijs.com/guide/styles/#expect
7 http://chaijs.com/guide/styles/#assert

287Testing

http://nodejs.org/api/assert.html
http://chaijs.com/
http://chaijs.com/guide/styles/#should
http://chaijs.com/guide/styles/#expect
http://chaijs.com/guide/styles/#assert

var expect = require('chai').expect;

it('Addition Test', function() {
 var foo = 2 + 2;

 expect(foo).to.equal(4);
});

Listing 23-9. A simple test that uses a Chai expect style assertion

Notice how simply the assertion in Listing 23-9 reads. Listing 23-10 includes several

other common examples of expect style assertions.

var expect = require('chai').expect;

it('expect style assertions', function() {
 expect(2).to.be.greaterThan(1);
 expect(null).to.not.exist;
 expect(false).to.be.false;
 expect('foo').to.be.a('string');
 expect(function(){
 throw new Error('foo');
 }).to.throw;
 expect([1, 2, 3]).to.have.length(3);
 expect({foo: 'bar'}).to.have.property('foo').and.equal('bar');
});

Listing 23-10. Common expect style assertions

Testing Angular
One of the reasons many developers choose Angular over other client-side offerings

is testability. Angular was built to be tested. This is evident by the dependency in-

jection pattern used throughout the Angular core. Recall that the second argument

to most Angular constructs is a list of dependencies. This allows the dependency

objects to be created outside the constructor and passed in as arguments, which can

drastically increase a code’s testability because tests can focus solely on developer

code instead of framework code. Let’s start by first writing a basic Angular controller,

and then we’ll set up our project to test it.

Full Stack JavaScript Development with MEAN288

Listing 23-11 is the controller we want to test. Create main.jsfile under

/public/javascript. EmployeeService is the $resource from previous examples in the

Angular chapters.

main.js

var app = angular.module('app', ['ngResource']);
app.factory('EmployeeService', ['$resource', function($resource) {
 return $resource('/employees/:employeeId', {}, {
 get: {
 isArray: true
 },
 post: {
 method: 'POST',
 isArray: false
 }
 });
}]);

app.controller('main', ['$scope', 'EmployeeService', function($scope,
➥ EmployeeService) {
 $scope.employees = [];
 $scope.firstName = $scope.lastName = '';

 EmployeeService.get(function (data) {
 $scope.employees = data;
 });

 $scope.addDisabled = function () {
 return !($scope.firstName.trim().length && $scope.lastName.
➥trim().length);
 }

 $scope.add = function () {
 EmployeeService.post({
 first: $scope.firstName,
 last: $scope.lastName
 }, function (data) {
 $scope.employees.push(data);
 $scope.firstName = $scope.lastName = '';
 });
 };
}]);

Listing 23-11 Our testing controller

289Testing

Looking at the controller, here’s what we want to test:

■ employees is properly set with the results of EmployeeService.get

■ addDisabled should return true until a valid first and last name both have values

■ add will call EmployeeService.post and the newly created employee will be

added to employees

■ after adding a new employee, addDisabled should return true

In a complete example, we’d want to test EmployeeService in isolation before

testing the main controller in Listing 23-1; however, EmployeeService is not indic-

ative of the majority of testing code needed to test Angular applications. The majority

of developer logic is in the controllers, so that's what we'll focus on testing in this

chapter.

Set Up
First, we’ll install the Karma test running local to the current project with npm in-

stall karma --save. Second, we’ll install the Karma CLI module globally via npm

install -g karma-cli. Karma is a test runner,8 not a testing library, that the An-

gular development team uses during development. It’s a tool to launch an HTTP

server, serve static files, watch files for changes, create an HTML test report, and

load a proper test framework into the browser.

Once both the Karma modules have been installed, run karma init in your project.

This will walk you through creating a karma.conf.js file in the current directory.

Accept the default value for the prompts. You'll need to make two small changes

for everything to be functional. After the generator has finished, open karma.conf.js

and make these changes:

frameworks: ['mocha', 'chai'],
files: [
 'http://ajax.googleapis.com/ajax/libs/angularjs/1.2.16/angular.js',
 'http://cdnjs.cloudflare.com/ajax/libs/angular.js/1.2.16/angular-
➥mocks.js',
 'http://code.angularjs.org/1.2.16/angular-resource.js',

8 http://karma-runner.github.io/0.12/index.html

Full Stack JavaScript Development with MEAN290

http://karma-runner.github.io/0.12/index.html

 'public/javascript/*.js',
 'public/javascript/test/*.js'
],

Listing 23-12 Karma configuration changes

The files setting configures Karma to load all the listed files into the browser. It

also sets up logic to watch the local folders for changes and rerun the test suite

when there are file changes. In Listing 23-2, we are instructing Karma to load several

Angular libraries first and then load our JavaScript last. All the files listed should

be familiar except for angular-mocks. angular-mocks gives us access to $httpBackend,9

which lets us mock HTTP requests without involving the web server. We will cover

$httpBackend in more detail shortly. angular-mocks overrides a few core Angular

functions as well to aid in testing.

frameworks instructs Karma to load mocha and chai into the browser. Our tests will

use mocha as a testing library and chai as an assertion framework.

Next, create a file in public/javascript/test called main_test.js. This is where we are

going to write our Mocha tests. Everything you learned about Mocha while testing

the Express server applies to testing client code as well. Now we need to install a

few more modules so that we can use both Chai and Mocha with Karma. Run the

following command in a terminal window: npm install mocha karma-mocha

karma-chai --save-dev.

You should be familiar with mocha at this point. The other two packages are just

adapters that let Karma communicate with both chai and mocha through the Karma

framework. Although you won’t be interacting with either of them directly, you

will need them installed for testing to work properly.

Test Code Setup
Finally, let’s flesh out main_test.js with some basic tests. First, we’ll show and discuss

the test code setup in Listing 23-13, and then we’ll cover the actual tests in Listing

23-14.

9 https://docs.angularjs.org/api/ngMock/service/$httpBackend

291Testing

https://docs.angularjs.org/api/ngMock/service/$httpBackend

main_test.js

describe('main controller', function() {
 beforeEach(module('app'));
 var _scope;
 var _httpBackend;

 beforeEach(inject(function($controller, $rootScope,
➥EmployeeService, $httpBackend) {
 _scope = $rootScope.$new();
 _httpBackend = $httpBackend;

 $httpBackend.when('GET', '/employees').respond([{
 first: 'Abraham',
 last: 'Lincoln'
 }, {
 first: 'Andrew',
 last: 'Johnson'
 }]);

 $httpBackend.when('POST', '/employees').respond({
 first: 'Grover',
 last: 'Cleveland',
 });

 $controller('main', {
 $scope: _scope,
 EmployeeService: EmployeeService
 });
 }));
 // Tests go here
 // {...}
});

Listing 23-13 Test code setup

Remember, we are using Mocha to test our client-side code. The functions and

conventions used to test server-side code are the same here. In the first beforeEach

function, we call module and pass app. This instructs Mocha to load the app module

and its dependencies before each test in this spec. module, in Listing 23-12, is one

of the Angular features that has been overwritten by angular-mocks. app has the

main controller attached to it, which is the controller we're trying to test.

Full Stack JavaScript Development with MEAN292

The second beforeEach is where the meat of the test setup is located. At a high

level, this beforeEach creates a new main controller before each test—the one

defined in Listing 23-11. We want a new controller for each test. because we want

to avoid any changes to the controller in one test from having unpredictable

downstream impacts on a future test. Creating a new controller for each test ensures

that each one starts with a controller in a known state.

During testing, the developer has to act like Angular and create a controller object

that manages all the dependencies by hand. inject might look a little odd at first,

but it is merely another of the mock functions provided by angular-mocks. It creates

a new instance of $injector, which is used to resolve dependency references. This

is the same function that’s used behind the scenes for all of Angular’s dependency

injection logic. In our test, we want to tap into this directly to control some of the

dependencies main will use.

To create a functional main controller, we’ll need $controller, $rootScope, Employ-

eeService, and $httpBackend. $controller is the internal function Angular uses

to create controllers, which we’ll use to manually create a controller object. Remem-

ber, $rootScope is the global Angular scope object that has functions for creating

children scope. The EmployeeService is the data access service built using $re-

source that communicates to the RESTful web server. Finally, $httpBackend is

another Angular mock dependency that we’ll use to intercept and mock HTTP re-

quests.

First, we create a new child scope object with $rootScope.$new() and store it in

_scope. If you notice the scope of _scope, it is available to every function nested

inside the describe block. This is intentional, otherwise, there would be no way

to observe changes internally to the $scope object inside the main controller. Because

objects are passed by reference, any changes in the controller to $scope will also

be reflected in _scope. We use _scope to observe changes that happen inside the

controller to the $scope value.

Next, we want to mock HTTP requests that will be going through EmployeeService.

The first argument to $httpBackend.when is the HTTP verb and the second is the

URI. The returned object has a respond method that accepts a response object. The

response object will be the payload of the mocked response when the associated

route is called via the $http module. The two routes we have set up with $http-

Backend are the same two routes available inside EmployeeService. So in main

293Testing

when EmployeeService.get is run, normally the low-level $http module would

make a GET request to the correct route on the web server. By using $httpBackend,

we are intercepting this request, returning a mocked response, and taking the web

server out of the testing loop. Similar to the _scope variable, we’ve created a _http-

Backend variable that can be accessed from any function inside describe.

Finally, we instantiate a new main controller with $controller. The first argument

is the controller name and the second is a hash object, where the key is the depend-

ency name and the value is the dependency object. We pass in _scope as the child

scope and pass EmployeeService through unmodified.

Controller Tests
Now that all the setup code is prepared, we are finally ready to write our controller

tests.

main_test.js

//Test one
it('should not allow add initially', function () {
 expect(_scope.addDisabled()).to.equal(true);
});
//Test two
it('should allow add when firstName and lastName have been set',
➥function() {
 _scope.firstName = 'Grover' ;
 _scope.lastName = 'Cleveland';
 expect(_scope.addDisabled()).to.equal(false);
});
//Test three
it('should have a list of employees after the "get" call is
➥complete', function () {
 _httpBackend.flush();
 expect(_scope.employees.length).to.equal(2);
});
//Test four
it('should return the new item after adding and disable the add
➥button', function () {
 _httpBackend.flush();

 _scope.firstName = 'Grover' ;
 _scope.lastName = 'Cleveland';
 _scope.add();

Full Stack JavaScript Development with MEAN294

 _httpBackend.flush();
 expect(_scope.employees.length).to.equal(3);

 var result = _scope.employees[2];
 expect(result.first).to.equal('Grover');
 expect(result.last).to.equal('Cleveland');

 expect(_scope.addDisabled()).to.equal(true);
});

Listing 23-14 main controller tests

Test one checks to make sure that addDisabled is true, initially because both first

and last names are blank. In test two, we set _scope.firstName and _scope.lastName

to strings. Now when we interrogate addDisabled, we expect the value to be false.

The business rule inside addDisabled should return false because the first and

last names have values. By having test code to demonstrate, it should be clear why

we created the _scope variable and how we can use it.

Tests three and four demonstrate how we use _httpBacked. In test three, the first

step is to invoke _httpBackend.flush. flush allows unit tests to control when

_httpBackend sends (flushes) responses. Every call to flush will send out any

pending responses currently held inside the state object inside _httpBackend. By

using flush, we can keep our code asynchronous while avoid writing asynchronous

tests.

When main initially loads, one of its first actions is to request a list of employees

with EmployeeService.get. $httpBackend intercepted that request and holds it in

an internal list of pending mock requests. flush empties out this internal list of re-

quests and sends out the mocked responses. In test three, after we flush the stored

requests, the callback in main will execute and set $scope.employees to the result

of the mocked GET request. After that happens, the length of _scope.employees

should be 2.

In test four, we flush the GET request to ensure the list of employees is populated.

Then we set the first and last names of _scope and invoke add. This calls Employ-

eeService.post and passes in the name values. Just like the GET request, the POST

request is stopped inside $httpBackend, so the callback function has yet to be fired

and the list of employees should be unchanged. We call _httpBackend.flush a

295Testing

second time to return the mocked POST request. This will cause the callback

function to fire, and will add the newly created employee into the list of employees

attached to _scope. The last few expect calls in test four validate that this has

happened as expected.

Running the Tests
Now that everything is set up, lets run these tests to see how our main controller

holds up to automated testing. In an open terminal, run karma start. A web browser

should open and display a connection message, and in the terminal where you ran

the start command, the test results should print out. If you’ve been following along

closely, all four tests should pass. At this point, if you make any changes to the

controller or test JavaScript files, the tests should rerun. This lets you refactor and

clean up with constant feedback.

Currently, the browser is displaying nothing useful. It is simply acting as a place-

holder for the tests and all the client-side libraries needed to run the tests. Our

configuration is only using the default reporters that log information directly to the

console. If you want well-formatted HTML in the browser or other reporting options,

check out the list of reporters on npm.10

Next Steps
We’ve only tested a controller here. If we wanted to thoroughly test our applica-

tion—and we should—we’d need tests for our custom directives and services as

well. We could also expand our testing efforts to include coverage measurements

too. Additionally, we could restructure our tests to be more modular. This was just

a short introduction to the tools and set up required to continue writing tests for

your Angular applications.

Summary
This chapter has discussed several methods for testing the various parts of a

JavaScript application. We began by looking at the Mocha framework for Node.js

testing. From there, we moved on to Angular testing with Karma. Conveniently,

Karma allows us to reuse a lot of our knowledge about Mocha.

10 https://www.npmjs.org/browse/keyword/karma-reporter

Full Stack JavaScript Development with MEAN296

https://www.npmjs.org/browse/keyword/karma-reporter

This concludes this chapter, and, indeed, this book. We sincerely thank you for

reading, and hope that you’ve learned a thing or two. We certainly learned a lot by

writing it.

297Testing

	Full Stack JavaScript Development with MEAN
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to Take Your Learning Further?

	Introduction
	The Rise of Full-stack JavaScript
	Node.js
	The Node.js Ecosystem
	MongoDB
	AngularJS

	Summary

	Node.js Introduction
	Familiarity with JavaScript
	The Problem with I/O
	An Example Web Server
	Stepping Around the I/O Problem
	Example Web Server Revisited

	Real World Data

	Your First Node.js Server
	Installing Node.js
	REPL
	Writing the Server
	Our Server in Action

	Summary

	Modules and npm
	npm
	npm install
	Global versus Local Installations
	Global Installation Setup

	npm search

	package.json
	The node_modules Folder
	Module Dependencies

	require()
	Other Uses for require

	Writing a Module
	Module Functionality
	Caching
	npm link
	npm link Step 1
	npm link Step 2

	Summary

	Node’s Programming Model
	The Event Loop
	The Illusion of Concurrency

	Asynchronous Coding
	Callback Functions
	Calling Conventions
	Exception Handling
	Callback Hell

	Event Emitters
	Extending EventEmitter

	Listening for Events
	Exception Handling
	The uncaughtException Event

	Promises
	Promise Chaining

	Summary

	Core Modules
	Command Line Arguments
	Working with the File System
	__filename and __dirname

	The Current Working Directory
	Reading Files
	Writing Files

	Streams
	Readable Streams
	Readable File Streams

	Writable Streams
	Handling Back Pressure
	Writable File Streams

	The Standard Streams

	Web Programming
	Creating a Server
	Routes
	Accessing Request Headers

	Summary

	Building the Node Server
	Server Plan
	Structuring the Application
	Getting Started
	Routing
	Database Module
	Querying the Database
	Response Generator
	Putting It Back Together
	Summary

	MongoDB Introduction
	NoSQL Databases
	History of MongoDB
	Installing MongoDB Locally
	Cloud Hosting
	Heroku Integration

	The MongoDB Shell
	Inserting New Data
	Retrieving Data
	Limiting the Size of the Result Set

	Updating Data
	Deleting Data
	Deleting Collections
	Deleting Databases

	Summary

	Interacting with MongoDB Using Mongoose
	Mongoose Node Module
	Schemas
	Mixed Schema Type
	ObjectID Schema Type

	Example Mongoose Schema
	Mongoose Models
	Creating More Documents
	Simple Queries
	Updating

	Summary

	Using MongoDB and Mongoose in Our Sample App
	Adding Mongoose Models
	The Employee Model
	The Team Model

	Populating the Database
	Accessing the Database
	Summary

	Alternatives to Mongo
	Relational Databases and SQL
	The mysql Module
	Connecting to a Database
	Connection Pooling

	Closing Connections
	Executing Queries
	Summary

	Introduction to Express
	The Building Blocks of Express
	Router
	Route Lookup
	Static Files

	Middleware
	Middleware Breakdown

	Routes
	Optional Parameters
	Other Route Options

	Putting It Together
	Generating an Express App
	Jade

	Summary

	Architecture of an Express Application
	Starting the Server
	app.js
	app.use
	cookieParser
	Static Files Revisited
	Error Handling
	Error Handling in Practice

	app.set

	Router Object
	Using the Router Object

	Exercise
	Simulating Database Interaction
	Generating the HTML

	Summary

	Using Express in Our App
	Updates to package.json
	The npm start Script
	Defining Routes
	Employee Routes
	Team Routes

	Update index.js
	Summary

	Alternative Server Frameworks
	hapi Overview
	Express Comparison
	Route Configuration
	Routing
	Built-in Capability
	Events
	Plugins
	Plugin Example

	Summary

	AngularJS Overview
	Single-page Applications
	SPA Frameworks

	Model-View-Controller Architecture
	Getting Angular
	Building from Source
	Releases

	Angular "Hello World"
	Summary

	Data Binding
	One-Way Data Binding
	Two-Way Data Binding
	A Simple Example
	Markup Explanation
	Summary

	Technical Overview
	$watch
	Digest Loop

	Simple Controllers
	Data Binding with Lists
	Summary

	Angular Directives
	Overview
	An Example Using Common Directives

	Creating Directives
	An Example Custom Directive

	Summary

	Controllers
	Syntax
	Dependencies
	Expanding on Our Example
	Express Integration
	JavaScript
	HTML

	Simple Service
	Using EmployeeService

	Summary

	Client-side Routing
	Getting Started with ngRoute
	Application Overview
	Code
	Router
	Routing Life Cycle Example

	Service and Controllers
	Views
	Putting It Together

	Summary

	Angular in Our App
	The Home Page
	CSS and Image Files

	app.js
	Template Files
	Team and Employee Listing Views
	Individual Team View
	Individual Employee View

	Summary

	Task Runners
	Introducing Gulp
	Setting Up Gulp
	Designing a Gulp File
	css Task
	javascript Task
	watch Task

	Summary

	Debugging
	The debugger Statement
	Running Chrome’s Debugger
	Controlling the Debugger
	Modifying Variables

	Node’s Debugger
	node-inspector
	node-debug

	Summary

	Testing
	Testing Node
	Defining Tests
	Asynchronous Tests

	skip() and only()
	Test Hooks
	Assertions

	Testing Angular
	Set Up
	Test Code Setup
	Controller Tests
	Running the Tests
	Next Steps

	Summary

